1、成都一年温度湿度的变化情况?
成都属亚热带季风气候,具有春早、夏热、秋凉、冬暖的气候特点,年平均气温16℃,年降雨量1000毫米左右。成都气候的一个显著特点是多云雾,日照时间短。民间谚语中的“蜀犬吠日”正是这一气候特征的形象描述。
成都气候的另一个显著特点是空气潮湿,因此,夏天虽然气温不高(最高温度一般不超过35℃),却显得闷热;冬天气温平均在5℃以上,但由于阴天多,空气潮,却显得很阴冷。成都的雨水集中在7、8两个月,冬春两季干旱少雨,极少冰雪。
成都极端最低气温为-5.9℃,大部分区市县出现在12月,少部分出现在1月。成都市属中亚热带湿润季风气候区,成都市常年最多风向是静风;次多风向:6、7、8月为北风,其余各月为东北偏北风。
(1)气候变暖空气湿度扩展资料:
成都地理位置
成都市地处四川盆地西部,青藏高原东缘,东北与德阳市、东南与资阳市毗邻,南面与眉山市相连,西南与雅安市、西北与阿坝藏族羌族自治州接壤。
地理位置介于东经102°54′~104°53′、北纬30°05~31°26′之间。2016年,全市土地面积为14335平方千米,市区面积为4241.81平方千米,其中建成区面积837.27平方千米。
2、假如气温跟着空气湿度变化,会怎么样?
湿度(RH%)及计算公式:一、湿度定义 在计量法中规定,湿度定义为“物象状态的量”。日常生活中所指的湿度为相对湿度,用RH%表示。总言之,即气体中(通常为空气中)所含水蒸汽量(水蒸汽压)与其空气相同情况下饱和水蒸气量(饱和水蒸气压)的百分比。 二、湿度测量方法 湿度测量从原理上划分有二、三十种之多。但湿度测量始终是世界计量领域中著名的难题之一。一个看似简单的量值,深究起来,涉及相当复杂的物理—化学理论分析和计算,初涉者可能会忽略在湿度测量中必需注意的许多因素,因而影响传感器的合理使用。 常见的湿度测量方法有:动态法(双压法、双温法、分流法),静态法(饱和盐法、硫酸法),露点法,干湿球法和电子式传感器法。三、绝对湿度和相对湿度、露点湿度很久以前就与生活存在着密切的关系,但用数量来进行表示较为困难。对湿度的表示方法有绝对湿度、相对湿度、露点、湿气与干气的比值(重量或体积)等等。 绝对湿度是指每立方米的空气中含有水蒸气的质量。 相对湿度(Relative Humidity,缩写为RH)是指水蒸气在空气中达到饱和的程度,饱和时为100%RH。当绝对湿度不变时温度越高相对湿度越小。当空气中的含水量没有达到饱和状态,实际含水量与饱和含水量的比值就是相对湿度。相对湿度达到100%,水就不会再自然蒸发了。温度不同,饱和水量也不同,温度越高,容纳的水越多,温度降低了,空气中不能容纳原来那麽多的水了就会出现结露。 凝露是当空气湿度达到一定饱和程度时,在温度相对较低的物体上凝结的一种现象。 湿度是普遍存在的,而凝露只是湿度达到一定程度时的一种特殊现象。四、相对湿度RH%的计算公式计算相对湿度可按照下述公式: 其中的符号分别是:ρw – 绝对湿度,单位是克/立方米
ρw,max – 最高湿度,单位是克/立方米
e – 蒸汽压,单位是帕斯卡
E – 饱和蒸汽压,单位是帕斯卡
s – 比湿,单位是克/千克
S – 最高比湿,单位是克/千克 相对湿度小于30%为低气湿。低气湿低温时可加速机体散热,此时人体中的热辐射被空气中的水蒸气吸收,人感到寒冷,引起毛细血管收缩,皮肤苍白,人体代谢降低,组织内血液循环和细胞代谢发生障碍,引起组织营养失调,发生冻伤。当室内相对湿度小于10%~15%时,空气干燥,使鼻腔、气管、支气管黏膜脱水,弹性降低,黏液分泌减少,纤毛运动减弱,抵抗力降低,使吸入的尘埃累菌不能很快被清除出支,容易诱发和加重呼吸系统疾病。干燥的空气还会导致表皮细胞脱水,角化加快,皮脂分泌减少,导致粗糙起皱、开裂。此外,空气过于干燥还将促使尘土飞扬,使人们的生活条件恶化。 在干燥季节,白喉、流感、百日咳、脑膜炎等疾病的发病率也显著增高,哮喘、支气管炎的发作次数明显增加。其主要原因是干燥空气使流感病毒和致病力很强的革兰氏阳性病菌繁殖速成度加快,并随粉尘扩散,引起疾病流行。 在室温比较适中时,相对湿度的变化对人体的影响比较小。当温度为15。5度时,相对湿度改变50%,对人体影响仅相当于室内温度变化为1度。
3、全球变暖会对气候的湿润度产生什么影响?
1.更多森林大火
全球变暖除了让冰川融化,飓风肆虐外,还加剧了森林大火。过去几十年中,在美国的西部各州,有更多森林大火发生,影响的区域更广。科学家发现,气温升高、冰雪提早融化都跟野火肆虐有关系。由于冰雪提早融化,森林地带变得更乾燥,而且乾燥时间变长,增加了起火的可能性。
2.古迹彻底毁掉
全球变暖很可能会令文明古迹彻底毁掉。海平面上升以及更恶劣的天气都有可能破坏这些无可替代的历史古迹。目前,全球变暖导致的洪涝灾害已经破坏了有600年历史的素可泰古城,这里曾经是泰国古代王朝的首都。
3.「回弹」的群山
普通登山者可能留意不到,由于山顶的冰雪融化,阿尔卑斯山和其他山脉的高度在过去一个世纪中都经历了缓慢的回弹过程。几千年来,这些冰山长期压著地表,导致地表受到压制。随著冰川融化,压在地面上的重量得以减轻,地表慢慢回弹。由于近年来全球变暖加速了冰川的融化,这些山脉回弹的速度加快。
4.运行更快的卫星
二氧化碳的增加改变著大气电离层的密度,这对在该层运行的卫星会产生一定的影响。由于大气中的二氧化碳量不断上升,低空的二氧化碳分子相撞时释放热量,导致空气变暖,而在高空二氧化碳分子稀薄,相互撞击的机会不够频繁,所以热量就向四周辐射,让周围的空气变得凉爽(电离层气体的温度比低空要高)。随著更多二氧化碳到达高空,更多冷却过程发生,空气流动性变差,所以大气变得更加稀薄,对卫星的拉力更小,导致卫星运行速度加快。
5.改变动物基因图谱
由于植物今年提早开花,那些按照以前的时间迁徙的动物或许会错过所有的食物。而那些能够调整自己的内部生物钟早早适应变化的动物更有机会生育有更强生存能力的子女,从而传递它们的基因信息,因此最终改变整个种类的基因图谱。
6.冻土解冻令地表不平
全球变暖使得永久冻土层解冻,导致地表收缩,变得凹凸不平,从而产生一些地坑,对铁路、高速公路和房屋等建筑造成损害。而对于高山来说,冻土层的融化甚至可能导致泥石流。
7.湖泊消失
过去几十年中,北极周边地区有125个湖泊消失。科学家经过研究发现,这些湖泊之所以消失可能是由于湖底永久冻结带解冻。由于这些永久冻结带解冻,湖水已经渗透到了土壤里。
8.极地植物现生机
北极冰层的融化为北极的生物带来了光明前景。研究发现,现在的北极土壤中叶绿素的浓度比古代土壤要高,显示了近几十年来北极地区的生物繁荣。
9.动物向更高地势迁徙
从19世纪初开始,花栗鼠、老鼠等动物就开始向高处迁徙。研究发现,这些动物之所以向更高的地方迁徙,可能是因为全球变暖导致它们的栖息地环境发生变化。栖息地环境的改变还威胁著北极熊等极地动物,因为它们栖息的冰层在慢慢融化。
10.过敏症加剧
研究显示,空气中更高浓度的二氧化碳量以及更高的气温也是导致过敏的因素之一。全球变暖令植物比以前早开花,而二氧化碳浓度增加,会让植物制造出更多的花粉,令空气中的花粉浓度增加。过敏源早来,过敏季节又迟迟不走。过敏症就只能越来越严重了。
全球变暖所导致的后果可能人人都可以背出来:气温升高、冰盖融化、海平面上升。不过,地球气候变化导致的另外一些后果如加剧过敏症、令森林大火肆虐以及让北极湖泊消失等可能人们很少了解到。
我们目前可采取的措施:
1、防止汽车发动机空转
2、严守法定速度
3、保持轮胎胎压处于适当值
4、汽车内不要堆积无用的东西
5、禁止油门的空转。
6、防止汽车急发动,急加速、急刹车,保持正常车距
7、尽早挂高速挡
8、防止违法停车以免招致堵车
9、减少使用车内空调
10、利用公共交通工具
11、设置车内空调温度值,冷气调高一度,暖气调低一度
12、停止室内电器待机状态
13、每次减少一分钟淋浴时间
14、停止设置电饭煲处于保温状态
15、家人尽量在同一房间活动
16、购物时携带购物袋,避免购买过渡包装商品
17、减少看电视的时间
4、为什么当温度升高,绝对温度增大,相对湿度减小
在一个开放环境中,温度升高,绝对湿度会增加.在一个封闭环境中,温度升高,绝对湿度不变.在一个开放环境中,温度升高,相对湿度一般会变小。在一个封闭环境中,温度升高,绝对湿度不变,饱和湿度变大,所以相对湿度变小。
绝对湿度不变的情况下,温度升高,相对湿度就会降低,相对湿度是当前湿度和饱和湿度的比值,当温度升高,空气携带水分的能力升高,饱和湿度升高的很快,所以相对湿度会下降因为温度高了,水被蒸发了。
(4)气候变暖空气湿度扩展资料
同样多的水蒸气的情况下温度降低相对湿度就会升高
相对湿度指空气中水汽压与饱和水汽压的百分比。也就是绝对湿度与最高湿度之间的比,它的值显示水蒸气的饱和度有多高。
在当前的气温之下,空气里的水分含量达至饱和,相对湿度就是100%空气中相对湿度超过100%时,水蒸气一般会凝结出来。
随着温度的增高空气中可以含的水就越多,即在同样多的水蒸气的情况下温度降低相对湿度就会升高。
5、天气的变暖空气湿度增大各种病菌也油然而生这句话对吗
错,搭配不当,病菌不能用“油然而生”,油然而生是形容一种情绪在心里出现。可以改成:
天气变暖,空气湿度增大,各种病菌也开始滋生。
6、气候变暖的最终结果有可能是气候变冷,有什么根据?
《后天》你当然看过吧,它就是以此为假设的!
气候变冷是气候变暖的可能结果,而这种变暖趋势的最终结果,具有很大的不确定性。只是科学家的预言!
由于温室效应,低大气层中二氧化碳含量的日益增长导致气候变暖。在过去的30年中,地表温度最少升高了0.4度。这些热量上升至高层大气,在那里导致二氧化碳放射出红外射线。由于那个高度上的内空气非常稀薄,只有一些射线能够被其他二氧化碳分子重新吸收。研究人员在过去的几十年中经过多种方法证实,最终结果将导致高层大气的冷却。
全球温室效应将导致容北极气温发生重大变化。秋季和冬季的气温将上升8-10℃,夏季上升1-2℃。而这种变暖趋势的最终结果,具有很大的不确定性。科学家还预言,全球增暖将使北极的降雪量大增,因而有些人推测这可能导致冰期的突然来临。许多科学家同意这样的看法:北极剧烈的气候变化将导致更大范围内的气候不平衡,当然也会影响整个北半球的气候状况。
7、温度越高是不湿度就越高,温度跟湿度是怎么变化呢!
这个要看地域的:在水分充足的情况下,是温度越高适度越高(如果没有水可以蒸发了,那么空气中自然就没有水了)。 温度越低,越干燥。
8、哪个气候类型温度与湿度季节变化不显著
温带海洋性气候
特点;
冬暖夏凉,年温差小
海洋性气候区内愈靠近大洋,气候的海洋性愈强。特别是在冬季,因沿岸有暖流经过,西风从暖流海面吹来,气流温暖潮湿,因此冬季气温比同纬度的大陆中心和大陆东岸暖得多。最冷月均温均在0℃以上。夏季时暖流水温仍较大陆温度低,海上要比陆上凉得多,这里受西风影响最热月均温在22℃以下。由于冬暖夏凉,年温差要比同纬度其它地区小得多。
全年有雨,冬雨较多
此区正当温带气旋活动的路径上,气旋雨量丰沛,特别是冬季时温带气旋更为活跃,雨日很多,但降水强度并不大。冬季降水量在全年所占比例稍大,全年没有干季,用一句话概括温带海洋性气候的特点:冬无严寒,夏无酷暑。
气温年变化与日变化都很小
在洋面上甚至观测不到日变化。年变化的极值一般比大陆后延1个月,如最冷月为2月,最暖月为8月。在高纬地区最冷月还可能是3月,最暖月也可能到9月。秋季暖于春季。
降水量的季节分配比较均匀
降水日数多,但强度小。云雾频数多,湿度高。
在热带海洋多风暴
如北太平洋西南部分与中国南海是台风生成和影响强烈的地区。热带风暴(包括台风)是一种十分重要的气象灾害。
多云雾天气,湿度大
多数临近海洋的大陆地区,都具有海洋性气候特征,西欧沿海地区是大陆上典型的海洋性气候区。
9、温度和湿度的关系
空气的温度高低,决定了空气中能够含有水分的最大程度,湿度和温度,没有必然的关系,和当地的气压有一定的关系。
湿度,表示大气干燥程度的物理量。在一定的温度下在一定体积的空气里含有的水汽越少,则空气越干燥;水汽越多,则空气越潮湿。空气的干湿程度叫做“湿度”。在此意义下,常用绝对湿度、相对湿度、比较湿度、混合比、饱和差以及露点等物理量来表示;若表示在湿蒸汽中水蒸气的重量占蒸汽总重量(体积)的百分比,则称之为蒸汽的湿度。人体感觉舒适的湿度是:相对湿度低于70%。
温度(temperature)是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。国际单位为热力学温标(K)。目前国际上用得较多的其他温标有华氏温标(°F)、摄氏温标(°C)和国际实用温标。从分子运动论观点看,温度是物体分子运动平均动能的标志。温度是大量分子热运动的集体表现,含有统计意义。对于个别分子来说,温度是没有意义的。根据某个可观察现象(如水银柱的膨胀),按照几种任意标度之一所测得的冷热程度。
10、大气压强与温度,湿度关系?为什么?
气压的大小与海拔高度、大气温度、大气密度等有关,一般随高度升高按指数律递减。气压有日变化和年变化。一年之中,冬季比夏季气压高。一天中,气压有一个最高值、一个最低值,分别出现在9~10时和15~16时,还有一个次高值和一个次低值,分别出现在21~22时和3~4时。
气压日变化幅度较小,一般为0.1~0.4千帕,并随纬度增高而减小。气压变化与风、天气的好坏等关系密切,因而是重要气象因子。通常所用的气压单位有帕(Pa)、毫米水银柱高(mm·Hg)、毫巴(mb)。
它们之间的换算关系为:100帕=1毫巴≈3/4毫米水银柱高。气象观测中常用的测量气压的仪器有水银气压表、空盒气压表、气压计。温度为0℃时760毫米垂直水银柱高的压力,标准大气压最先由意大利科学家托里拆利测出。
(10)气候变暖空气湿度扩展资料
1、地势变化
从微观角度看,决定气体压强大小的因素主要有两点:一是气体的密度n;二是气体的热力学温度T。在地球表面随地势的升高,地球对大气层气体分子的引力逐渐减小,空气分子的密度减小;同时大气的温度也降低。
所以在地球表面,随地势高度的增加,大气压的数值是逐渐减小的。如果把大气层的空气看成理想气体,我们可以推得近似反映大气压随高度而变化的公式如下:
μ=p0gh/RT (μ为空气的平均摩尔质量,P0为地球表面处的大气压值,g为地球表面处的重力加速度,R为普适气体恒量,T为大气热力学温度,h为气柱高度)
由上式我们可以看出,在不考虑大气温度变化这一次要因素的影响时,大气压值随地理高度h的增加按指数规律减小,其函数图象如图所示。在2km以内,大气压值可近似认为随地理高度的增加而线性减小;在2km以外,大气压值随地理高度的增加而减小渐缓。
所以过去在初中物理教材中有介绍:在海拔2千米以内,可以近似地认为每升高12米,大气压降低1毫米汞柱。
2、纬度变化
地球表面大气层里的成份,变化比较大的就是水汽。人们把含水汽比较多的空气叫“湿空气”,把含水汽较少的空气叫“干空气”。有些人直觉地认为湿空气比干空气重,这是不正确的。干空气的平均分子量为28.966,而水气的分子量只有18.106,所以含有较多水汽的湿空气的密度要比干空气小。
即在相同的物理条件下,干空气的压强比湿空气的压强大。 在地球表面,由赤道到两极,随地理纬度的增加,一方面由于地球的自转和极地半径的减小,地球对大气的吸引力逐渐增大,空气密度增大。
另一方面由于两极地区温度较低,所以空气中的水汽较少,可近似看成干空气,所以由赤道向两极,随地理纬度增加,大气压总的变化规律是逐渐增大(因气候等因素影响,局部某处的大气压值变化可能不遵循这一规律)。
3、日变化
对于同一地区,在一天之内的不同时间,地面的大气压值也会有所不同,这叫大气压的日变化。一天中,地球表面的大气压有一个最高值和一个最低值。最高值出现于9~10时。最低值出现于15~16时。
导致大气压日变化的原因主要有三点。一是大气的运动;二是大气温度的变化;三是大气湿度的变化。 日出以后,地面开始积累热量,同时地面将部分热量输送给大气,大气也不断地积累热量,其温度升高湿度增大。
当温度升高后,大气逐渐向高空做上升辐散运动,在下午15~16时,大气上升辐散运动的速度达最大值,同时大气的湿度也达较大值,由于此二因素的影响,导致一天中此时的大气压最低。
16时以后,大气温度逐渐降低,其湿度减小,向上的辐散运动减弱,大气压值开始升高;进入夜晚;大气变冷开始向地面辐合下降,在上午9~10时,大气辐合下降压缩到最大程度,空气密度最大,此时的大气压是一天中的最高值。
4、年变化
同一地区,在一年之中的不同时间其大气压的值也有所不同。这叫大气压的年变化。大气压的年变化,具体又分为三种类型,即大陆型、海洋型和高山型。其中海洋型大气压的年变化刚好与大陆型的相反。通常所说的“冬天的大气压比夏天高”,指的就是大陆型大气压的年变化规律。下面对此略做分析(另外两种情况不做讨论)。
由于大气处于地球周围一个开放没有具体疆界的空间之内,这就使它与密闭容器中的气体有着很多区别。夏天,大陆中的气温比海洋上高,大气的湿度也比较大(相对冬天而言),这样大陆上的空气不断向海洋上扩散,导致其压强减小。
到了冬天,大陆上气温比海洋上低,大陆上的空气湿度也较夏天小,这样海洋上的空气就向大陆上扩散,使大陆上的气压升高。这就是大陆上冬天的大气压比夏天高的原因(大气温度也是影响大气压的一个因素,但在这里决定大气压变化的因素不是气温,而是大气的流动及大气的密度)。
5、气候变化
大气压随气候变化的情况比较多,但最为典型的就是晴天与阴天大气压的变化。有句谚语叫“晴天的大气压比阴天高”,反映的就是大气压的这一变化规律。 通常情况下,地面不断地向大气中进行长波有效辐射,同时大气也在不断地向地面进行逆辐射。
晴天,地面的热量可以较为通畅地通过有效辐射和对流气层的向上辐散运动向外输运。阴天时,云层减少了对流层大气向外的辐散运动。云层这种保存地表和对液层热量的作用称为“温室效应”。
这样,阴天地区的大气膨胀就比较厉害,从而导致阴天地区的大气横向向外扩散,使空气的密度减小,同时阴天地区大气的湿度比较大,也使大气的密度减小。因这两个因素的影响,从而导致阴天的大气压比晴天的大气压低。
参考资料来源:网络-标准大气压
参考资料来源:网络-大气压强