导航:首页 > 气象灾害百科 > 泥石流地声传感器

泥石流地声传感器

发布时间:2021-07-09 05:02:37

1、给你一些声音传感器制作的建议

很多东西都要我们去发现和创新,现在的小朋友都喜欢把自己喜欢的玩具车拆开,然后又根据自己的思维来组合完整。有些小朋友就喜欢玩积木,喜欢用自己的思维把积木拼成原来的图案等等这都基于他们的创新思维。那么声音传感器制作他们可能还未达到这种思维,只有我们对声音传感器制作有一定了解的人才能做到。下面我将会介绍一些成品声音传感器来作参考!

声音传感器的作用相当于一个话筒(麦克风)。它用来接收声波,显示声音的振动图象。但不能对噪声的强度进行测量。
简单的传感器电路,麦克风就是一个信号源,R1为麦克风的信号提供一个DC电位。经过C1耦合,进入下一级,R2和Rp的作用就是调节C1后信号的DC单位的高低,以便Q1导通和与后面比较器比较,经过Q1的放大,R3为放大管提供偏压,R4 R5为比较器的2脚固定一个电压,为基准电位,3脚电位和2脚想比较,3高1脚就输出高电位,LED不亮。3低1脚就输出低电位,LED就亮!

工作原理
该传感器内置一个对声音敏感的电容式驻极体话筒。声波使话筒内的驻极体薄膜振动,导致电容的变化,而产生与之对应变化的微小电压。这一电压随后被转化成0-5V的电压,经过A/D转换被数据采集器接受,并传送给计算机。

规格
声音传感器能显示声音强度大小,也能研究声音的波形;
档位1(测量声强):45~120dB;
档位2(测量波形):0~5V(测量频率范围100Hz~4000Hz)
分辨率:1Hz,
精度:±1%
使用
A.该传感器无需再次进行校准,软件自动调零。
B.采样频率要取10000次/秒或更大些,否则不能真实、准确地反映声振动的图像。
C.图像的纵坐标表示的是与声振动对应的电压数值。
D. 接入控制系统的可以采用4~20mA的输出型传感器,如四川瞭望的ZS系列
E. 成本上有限制的情况下可以采用正负信号输出的,如:TZ-2KA等

声音传感器的原理我基本上介绍出来了,而我希望这些原理能够更好地帮助你对声音传感器制作有更大的发散思维。我没有制作过声音传感器,但对它的原理还是略知一二的。所以不能手把手的把方法告诉你们!如果朋友们真的想要声音传感器制作方法的,那么你就要多些关注小编的小文章了!快乐的时间过得真快,又要结束这个话题了!

2、声音传感器型号有哪些?

    导语:我们以前介绍过很多种关于传感器的相关知识,那么大家就应该知道传感器它是一种可以将被测量的某种东西按照一定的规律转换成一定的可用信号的一种装置。声音传感器也是一样的道理,声音传感器其实是相当于是一个话筒麦克风,它的作用是可以用来接收声波,它可以显示声音的强度大小。今天小编就带大家了解一些声音传感器的基本型号。一起来看一下吧。

声音传感器的工作原理

传感器内置一个对声音敏感的电容式驻极体话筒。声波使话筒内的驻极体薄膜振动,导致电容的变化,而产生与之对应变化的微小电压。这一电压随后被转化成0-5V的电压,经过A/D转换被数据采集器接受,并传送给计算机。它可以显示声音的振动图象。但不能对噪声的强度进行测量。


声音传感器的型号

1.声音传感器——BR-ZS1噪声监测仪,独有的4-20mA标准噪声输出,易于安装的外壳设计,集采集,分析,输出为一体的一体化设计。广泛应用于工业,环保等领域。

2.声音传感器——BR-N201智能噪声仪,手持式的智能噪声仪,方便随时检测,带RS232接口,更有我们开发的软件,可接电脑实时监测噪声情况,保存,打印数据。

3.声音传感器——TZ-2KA噪声传感器,交流电压信号输出,配接采集仪,得到波形图,声压值。TZ-2KA噪声传感器体积小,精度高,体重轻,操作简单。


声音传感器的使用

A.该传感器无需再次进行校准,软件自动调零。

B.采样频率要取10000次/秒或更大些,否则不能真实、准确地反映声振动的图像。

C.图像的纵坐标表示的是与声振动对应的电压数值。

D.接入控制系统的可以采用4~20mA的输出型传感器,如四川瞭望的ZS系列

E.成本上有限制的情况下可以采用正负信号输出的,如:TZ-2KA等。


声音传感器规格

声音传感器能显示声音强度大小,也能研究声音的波形;

档位1(测量声强):45~120dB;

档位2(测量波形):0~5V(测量频率范围100Hz~4000Hz)

分辨率:1Hz,

精度:±1%


介绍了这么多关于声音传感器的相关知识,相信大家对它已经了解了不少了吧?那么,随着声控系统在我们生产生活中的普遍应用,声音传感器也越来越成为我们日常生活中不可缺少的东西。作为现代生活的主体。我们有必要掌握它的相关知识,以及发展趋势。如果大家对它感兴趣,可以继续跟随小编的脚步,小编会带大家了解更多你想知道的。

3、相关物理指标

一、地声

声波是自然界中普遍存在的一种自然现象,按频率可分为次声波、可听声波和超声波3种。次声波的频率范围为10-4~20Hz,可听声波的频率范围为20~2 ×104Hz,超声波的频率范围为2×104~1012Hz以上,频率在1012Hz以上的声波称为特超声波。

岩体在发生变形前,随着应力的释放部分能量转换成辐射性次声波。一般来说,岩石破裂产生的声发射信号比观测到位移信息超前7天至2秒,因此,地声监测适用于岩质斜坡处于临滑临崩阶段的短临前兆性监测。对于处于蠕动变形阶段和匀速变形阶段的崩滑体,可以不采用。

地声监测技术方法是利用测定边坡岩体受力破坏过程中所释放的应力波的强度和信号特征来判别岩体稳定性的方法。工作原理是地声监测仪对地质体发生形变所产生的声脉冲信号或岩体变形过程中所产生的摩擦噪声进行自动接收、实时处理,取得反映地质体形变过程的主频、带宽以及能量,并结合其他手段,达到临灾预测、预报。最早应用于矿山应力测量,近十几年来逐渐被应用到滑坡的监测中。仪器有地声发射仪、地音探测仪,利用仪器采集岩体变形破裂或破坏时释放出的应力波强度和频度等信号资料,分析判断崩滑体变形的情况。仪器应设置在崩滑体应力集中部位,灵敏度较高,可连续监测,但仅适用于岩质崩滑体或斜坡的变形监测,且在崩滑体匀速变形阶段不适宜。测量时将探头放在钻孔或裂缝的不同深度来监测岩体(特别是滑动面)的破坏情况。利用声发射技术可作为滑坡挤压阶段地面裂缝不明显、地面位移难以测出的早期监测预报手段,对崩塌性滑坡具有较高的应用前景,但对其他类型滑坡应用的可能性尚待深入研究。

目前,地声监测在泥石流监测领域也逐渐发挥其作用。泥石流是一种饱含泥沙、石块的浓稠流体,这种介于高含沙水流和块体(滑坡、崩塌等)运动之间的流体以每秒数米至数十米(通常为10~20m/s)的速度在山谷沟床中流动,其发出的次声信号的频率、主频振幅及持续时间等有其独有的特征,在常温下的空气中可以344m/s的速度长距离传播不衰减或很少衰减。地声监测仪可以捕捉到泥石流源地的次声信号,并对接收的信号进行特征提取,分析判断是否发生了泥石流。且其传播速度远大于泥石流的运动速度,故能在泥石流到达人员居住区前提前给出预警,避免人员伤亡。

二、泥位

泥石流发生时,其流量明显增大,通过监测泥石流在流通过程中的泥位,可以判断泥石流的发生和规模。监测方法有接触式和非接触式两种。接触式是感知泥石流的运动和到来,并发回信息,这种方法有断线法,即在泥石流沟床内布设金属感知线,一旦泥石流冲断了该线,断线信号发回而实现报警。这种方法不适合大冲大淤的泥石流沟床,因为感知线会因沟床冲刷而凌空不断,或因沟床淤积被埋而不断,因此丧失了报警的功能。接触法的另外一种是冲击力测量法,它是在泥石流沟床内布设冲击力传感器,一旦泥石流流过,其冲击力信号随即被捕捉并发回而实现报警。该法如果仅为警报服务,显得过于昂贵,一般都结合观测研究使用。非接触法普遍采用的是超声波测量法(图5-1),即用悬挂于沟床上方的超声波传感器来监测沟床水位(或泥位)的变化,可设定阈值,超过一定的阈值,即可报警。

图5-1 超声波泥位监测仪工作原理示意图

三、岩土体含水率

岩土体含水率是指天然岩土体所含水分的质量与达到恒重后的干土质量的比值,以百分数表示。含水率是岩土的3个基本物理性质指标之一,它反映了岩土的状态,是了解黏性土稠度和砂土湿度的重要指标,又是计算岩土的干密度、孔隙比、饱和度、液性指数等的必要指标。一般现场直接测量和采样实验室测试。

岩土层含水量的变化是引起滑坡、泥石流等地质灾害的重要因素,因此对相关地段开展岩土体含水量监测非常必要。岩土体含水量传统上主要采用烘干称重法进行测量,为了实现自动化监测,逐步发展了电阻法、中子法和γ-射线法、光学测量法和TDR法、电容法等监测技术。

1.原位测定法

原位测定法采用岩土含水率仪和TDR仪。

岩土含水率仪体积小巧美观便于携带,触摸式按钮,大屏幕点阵式液晶显示,操作方便,全中文菜单操作,简捷方便。一键式切换,可以手动记录也可脱离电脑随时设置采样间隔,自动记录数据。

TDR(Time Domain Refletrometry)时域反射仪是新近发展起来的一种测定土壤含水率的方法,其主要优越性是在测试土壤水分过程中可不破坏土壤原状结构,操作简便,并可直接读取土壤含水量,便于原位动态监测,通过讯息转换而达到数据自动采集的目的,因而很快为人们所接受。

2.实验室测试法

主要有烘干法和酒精燃烧法。

烘干法是现场采集待测岩土样品500g,密封并快速送往实验室,取具有代表性的土样50g置于烤箱内,在100~105℃温度下将岩土样烘干至恒重测定土的含水率。酒精燃烧法是在土样中加入酒精,利用酒精能在土上燃烧,使土中水分蒸发,将土样烘干。一般应燃烧3次。因为燃烧时的温度有所不同,会有一定误差。

3.时域反射法和频域反射法以及某些电容法等土壤水分测量方法

应用被测介质中表观介电常数随土壤含水量变化而变化的原理测定土壤含水量。土壤表观介电常数Ka与土壤水分含量的对应关系是通过大量的测试得到的,只要知道土壤的介电常数Ka值我们就很容易的得到水分含量。

一般认为,介电法土壤水分传感器测量的是土壤的容积含水量θV,输出的是电压信号V。理论上介电法土壤水分传感器的静态数学模型是一个三次多项式。对传感器进行率定时,将传感器在土壤含水量系列中进行测试,测量其输出电压,可得到一组测量数据(Vi,θVi),再通过回归分析拟合成一元三次多项式

,确定出回归系数,即可得到传感器的特征方程。

四、土压力

土压力通常认为是挡土构筑物周围土体介质传递给挡土构筑物的水平力,也可认为是竖向荷载在土体内部产生竖向土柱力,它包括土体自重应力、附加应力和水压力等。土压力大小直接决定着挡土构筑物及被挡土体的稳定和安全。现实中影响土压力的因素很多,如土体介质的物理力学性质及结构组成,附加应力和地震力作用,水位变化及波浪作用,挡土构筑物的类型及施工工艺,被挡土体的回填工艺等。这些影响因素给理论分析带来了一定困难,因此常常进行必要的原型观测来监测土压力的分布规律,以指导现实工程设计与施工。

土压力计是测定土压力及其变化的仪器,国内常用的有差动电阻式和钢弦式两种。现有土压力计的类型主要有钢弦式、差动电阻式、光纤光栅式、分离式等众多品种。钢弦式土压力计应用最为广泛。它具有长期稳定性高,对绝缘性要求较低,抗干扰能力强,受温度影响小的特点,较适用于土压力的长期观测要求,在我国岩土工程中的应用最为广泛。

钢弦式土压力计(图5-2)是由承受土压力的膜盒和压力传感器组成的。压力传感器是一根张拉的钢弦,一端固定在薄膜的中心上,另一端固定在支撑框架上。土压力作用在膜盒上,膜盒变形,使膜盒中的液体介质产生压力,液体介质将压力传递到传感器的薄膜上,薄膜中心产生挠度,钢弦的长度发生变化,自振频率随之发生变化。通过测定钢弦的自振频率,换算出土压力值。

图5-2 钢弦式土压力计

五、应变

应变测量就是测量弹性物体的变形量与原来体积的比值。在地质环境监测中测量应力应变量的目的是确定岩土体的变形程度,进而判断岩土体稳定性。应变测量一般采用光纤应变计和埋入式振弦应变计。

光纤是一种利用光在玻璃或塑料制成的纤维中的全反射原理制作成的光传导工具,光纤应变计是根据光纤应变时,在光纤中传输的光程将发生变化来确定应变的。光纤应变计具有结构简单、稳定性和线性度好,信噪比高、灵敏度高、不受电磁和雷电干扰、不怕腐蚀、寿命长等优良特性。

埋入式振弦应变计由一根管子连接两个圆形法兰盘端块组成,管内安装有经热处理的高抗拉强度钢丝,钢丝由固定在两端的O型圈密封在管内(图5-3)。两端平滑的圆形法兰盘可将被测岩土体变形传递到钢丝上,其一端有顶压弹簧和测微螺丝,根据被测岩土体是否经受拉伸、压缩或拉压两种可能性而调整初始钢丝的预拉程度。电磁线圈安装在管外中间位置,被测岩土体中产生的应变改变了钢丝的张力,从而也就改变了其共振频率。读数仪在电磁线圈中的各个频率段所产生的电压脉冲迫使钢丝振动,该振动在线圈中产生交流电压。读数仪通过选择相应于所产生的峰值电压的频率,即钢丝的共振频率,或显示其周期或显示为应变线性值。埋入式振弦应变计具有长期稳定性、高精度及高分辨率、量程可调、实用性极强、结构坚固、可同时提供温度测量、法兰盘带安装孔、频率信号稳定、可进行长距离传输等优点。

图5-3 振弦应变计示意图

4、泥石流监测

一、监测项目

泥石流监测除需进行与滑坡、崩塌监测类似的地表变形、降水量、地声、岩土体含水率监测外,一般还要进行泥位监测和视频监测。

二、监测频率

泥石流监测频率与滑坡、崩塌监测类似,自动化监测一般每天1次,必要时可以加密(如强降雨过程)。人工监测一般每月2~3次,必要时可以加密,如强降雨过程。

视频监测为实时监控,如受传输手段限制的话可选择1~2h发送一次监测画面。

三、监测成果应用案例

由于受到“5.12”汶川地震的影响,四川省绵竹市清平乡岩体松动,诱发了大量的表层滑塌、崩塌、滑坡等灾害。为了应对严峻的地质灾害防治形势,地震后地方政府在文家沟等危险地段建设了以降水量监测为主的泥石流监测系统,并向当地群众开展了广泛的地质灾害防治知识的宣传培训及应急演练。2010年8月12日夜间至13日凌晨,连续8h降雨累计达227mm,诱发了450万m3土石倾泻而下,冲出文家沟,阻塞了绵远河,袭击了清平乡场镇,冲毁了大量房屋,在场镇中堆积了厚度超过2m的泥土、碎石。灾害来临前,地质灾害监测人员根据监测到的降雨数据和现场巡查的异常现象,判断泥石流即将发生,迅速报告乡镇政府,果断采取了紧急避让措施。最终,除在转移过程中躲避不及造成7人遇难外,当地5400名群众安全转移,伤亡代价降至最低。此次事件被认为是泥石流监测成果应用的一个典范,是成功预警泥石流灾害的一个样本。

此次灾害发生后,由于不利的地质地形条件依然存在,四川省组织建设了更为完备的泥石流监测系统。2012年5月,绵竹市清平乡文家沟、走马岭沟泥石流监测预警系统全面完成野外仪器部署和设备调试,开始投入试运行。监测预警系统采用遥测雨量站、远程视频、雷达泥位计、泥石流次声波仪、地下水渗透压力传感器等先进仪器设备完成野外监测信息的实时采集,并将监测信息通过光纤、GPRS信号、卫星等现代通信手段完成数据及图像的远程传输。实现与省汛期地质灾害防治应急指挥部值班单连、会商系统的无缝对接,其结果将有效提升泥石流灾害隐患的实时监测预警能力。

5、最近两年,地震、泥石流等地质灾害频发,造成人员伤亡.搜救人员在搜救过程中采用了音频生命探测仪,如图


A、探测仪通过探头将声音传到人耳,利用了固体可以传声的原理.故A正确,不符合题意.
B、根据声音的三个特征:音调、响度及音色,人耳能分辨发声体的不同.故B正确,不符合题意.
C、超声波是指频率高于人的听觉上限的声波,人耳不能听到.故C错误.符合题意.
D、白天受噪声的干扰不如夜晚听得清楚. 故D正确,不符合题意.
故选C.

6、泥石流的时间预报

(一)利用相关参数进行预报

泥石流的时间预报往往指短期预报。中长期的预报大多是根据已有历史资料分析的大致周期和空间预报的结合进行的。对于泥石流的短期预报,国内外使用的方法很多,往往是对极危险的可能在近期暴发的泥石流沟谷进行的。

研究表明,大部分泥石流的暴发与降水总量和降水强度有关。所以,有人用降水量即降水强度的指标来进行预报,即泥石流的气象水文预报。如成昆铁路四川境内,日降水量大于等于50mm时,可作为泥石流暴发的激发指标。

区域降水强度与泥石流的关系更为密切,所以,用“灾害暴雨”来表述引起泥石流暴发的临界雨强。由于各地地形、地质条件的差异,其临界雨强也不一样。据实例资料,在东南沿海地区特大或大暴雨(24小时降水量大于200mm或100~200mm)才可能发生灾害性泥石流。而在西北地区大雨(25~50mm)就有可能发生灾害性泥石流。因此,应根据不同地区泥石流发生的特点具体确定该临界值的大小。

此外,有人以坡度、固体物质储备量和降水总量三个因素的组合来进行泥石流预报。

(二)利用仪器报警

1.泥石流遥测地声警报器

根据泥石流地声特点(频率范围、振动强度与洪水有很大差异的特点),以振动强度、频率范围和延续时间的要素作为控制指标,研制泥石流地声报警器来进行泥石流预警。

2.泥石流泥位报警器

当泥石流厚度(即泥位)大于一定值时,仪器就发出报警信号,一般可提前3~8分钟。这一方法最早在日本使用,原理简单,价格低廉。其缺陷是受冲淤变化和泥石流改道的影响,加之监测域暴露面积大,易被人为活动破坏。

7、泥石流勘查的基本规定

1.工程地质测绘

1)遥感解译:从卫片和航片解译泥石流区域性宏观分布、地貌和地质条件;有条件时可用不同时相的影像图解译、对比泥石流发展状态,编制遥感图像解译图,航片比例尺宜为1∶~1∶34000。

2)填图要求:所划分的填图单元在图上标注的尺寸最小为2mm。对于小于2mm的重要单元,可采用扩大比例尺或符号的方法表示。在1∶500或1∶2000的地形图上可能修建拦挡工程和排导工程地段,其地质界线的地质点误差不应超过3mm,其他地段不应超过5mm。

3)地质地貌测绘:对全流域及沟口以下可能受泥石流影响的地段,调绘与泥石流形成和活动有关的地质地貌要素,编制相应的地貌图与地质图,填绘纵剖面图与横剖面图。流域平面填图比例尺宜为1∶10000或1∶50000,分区平面填图比例尺宜为1∶500~1∶5000;纵剖面图比例尺横向宜为1∶500~1∶2000,竖向宜为1∶100~1∶500;横剖面图比例尺横向宜为1∶200或1∶500。测绘方法以沿沟追索、实测和填绘剖面为主。

2.水文调查

1)暴雨洪水调查:泥石流小流域一般无实测洪水资料,可根据较长的实测暴雨资料推求某一频率的设计洪峰流量。对缺乏实测暴雨资料的流域,可采用理论公式和该地区的经验公式计算不同频率的洪峰流量。有关计算公式见水文计算手册。

2)溃决洪水调查:包括水库溃决洪水、冰湖溃决洪水和堵河(沟)溃决洪水。溃决洪水流量据溃决前水头、决口宽度、坝体长度、溃决类型(全溃决或局部溃决,一溃到底或不到底)采用理论公式计算或据经验公式估算,并结合实际进行校核。有关计算公式见溃坝水力学。

3.泥石流体勘查

1)泥痕测绘:选择代表性沟道,量测沟谷弯曲处泥石流爬高泥痕、狭窄处最高泥痕及较稳定沟道处泥痕。据泥痕高度及沟道断面计算过流断面面积,据上、下断面泥痕点计算泥位纵坡,作为计算泥石流流速、流量的基础数据。

2)泥石流流体试验:

·浆体重度测定:泥石流流体重度可根据泥石流样品采用称重法测定。泥石流体样品一般难以采到,可了解目击者回忆,根据泥痕和堆积物特征进行配制,采用体积比法测定。

·粒度分析:对泥石流体样品中大于2mm的粗颗粒进行筛分,粒径小于2mm的细颗粒用比重计法或吸管法测定颗粒成分。对泥石流体中固体物质的颗粒成分,从堆积体中取样测定。取样数量应结合粒径来确定。

·黏度和静切力测定:必要时进行黏度和静切力测定,用泥石流浆体或人工配制的泥浆样品模拟泥石流浆体,其黏度可采用标准漏斗1006型黏度计或同轴圆心旋转式黏度计测定;其静切力可采用1007型静切力计量测。

3)泥石流动力学参数计算:

·流速:据调查所得泥石流流体水力半径、纵坡、沟床糙率及重度等参数计算;也可按泥石流的性质和所在地域,选择合适的地区性经验公式计算。

·流量:泥石流流量可采用形态调查法(据泥痕勘测所得的过流断面面积乘以流速)或雨洪法(按暴雨洪水流量乘以泥石流修正系数)确定。暴雨小径流的地区性经验公式较多,暴雨洪水流量应采用适用的经验公式计算。

·冲击力:泥石流冲击力是泥石流防治工程设计的重要参数,分为流体整体冲压力和个别石块的冲击力两种。具体计算方法参照本节“六、泥石流特征值的确定”部分内容,除此之外还可采用其他公式加以印证。

·弯道超高与冲高:参照泥石流特征值的确定。

4)堆积物试验:通过调查、实验,按《土工试验方法标准》(GB/T50123—1999)确定泥石流堆积物的固体颗粒比重、土体重度、颗粒级配、天然含水量、界限含水量、天然孔隙比、压缩系数、抗剪强度和抗压强度等参数,供治理工程比选和设计使用。

5)泥石流的形成区、流通区和堆积区测绘:①工程治理区实测剖面至少应按一纵三横控制;②重点区应有1~3个探槽或探坑(井)控制;③各区测绘内容参见表56所列诸影响因素。

4.勘探试验

(1)勘探

勘探工程主要布置在泥石流堆积区和采取防治工程的地段。勘探工程以钻探为主,辅以物探和坑探等轻型山地工程。受交通、环境条件的限制,在泥石流形成区一般不采用钻探工程;当存在可能成为固体物源的滑坡或潜在不稳定斜坡必须钻探时,勘探线及钻孔布置参照“滑坡勘查”有关规定执行。

(2)钻探

泥石流防治工程场址主勘探线钻孔,宜在工程地质测绘和地球物理成果的指导下布设,孔距应能控制沟槽起伏和基岩构造线,间距一般30~50m。30m宽的沟谷应有1个钻孔控制,30~50m宽的沟谷应有2个钻孔控制,宽50m以上的沟谷应以30~50m间距布孔。当松散堆积层深厚不必揭穿其厚度时,孔深应是设计建筑物最大高度的0.5~1.5倍;基岩埋藏浅时,孔深应进入基岩弱风化层5~10m。

钻孔的布置应尽可能采用一孔多用,互相结合,使得钻探工程在勘查中发挥最好的效益。

孔径的选择,在松散岩层中,考虑其泥石流物质组成的特点,孔径一般要求在Φ145mm以上;在基岩钻进中,钻孔孔径可适当缩小,但终孔孔径不得小于Φ91mm。

钻孔的记录和编录:①钻进中的班报表记录应真实、及时,按钻进回次逐段填写,严禁事后追记;②钻探现场编录可采用肉眼鉴定、手触方法,对岩土描述除按规范外,可采用标准化、定量化的方法(孟塞尔色标、砂土粒样、点荷载仪、袖珍贯入仪),应计算岩心采取率和岩石质量RQD值;③钻探成果要有钻孔柱状图、岩心编录及野外现场试验记录。

(3)物探

物探工作除作为钻探工程的补充和验证外,在施工条件差、难以布置或不必布置钻探工程的泥石流形成区,可布置1~2条物探剖面,对松散堆积层的岩性、厚度、分层、基岩面深度及起伏进行推断。物探的比例尺应大于地质测绘的比例尺,一般采用1∶25000,1∶10000,1∶50000,1∶2000或1∶100。井中测定可采用更大的比例尺。适宜使用的方法:浅层地震、电阻率法、地质雷达及声波探测。

物探勘测的范围:①在泥石流形成区,其测线一般不超过测区单面坡的坡长,深度在20~30m范围之内;②在泥石流堆积区,测线应能控制住泥石流的分布,深度上也能控制堆积的厚度;③在工程勘测中,物探测线顺勘探线布置,其范围应能达到其所需物探数据;④在孔中垂直测定范围能控制两孔之间和孔深范围。成果报告应按各种物探方法的要求进行编制,最终统一到一种解译。

(4)坑槽探

结合钻探和物探工程,在重点地段布置一定数量的探坑或探槽,揭露泥石流在形成区、流通区、堆积区不同部位的物质沉积规律和粒度级配变化,了解松散层岩性、结构、厚度和基岩岩性、结构、风化程度及节理裂隙发育状况;现场采集具有代表性的原状岩土样。

探槽的规格:长度以需要为准,深度不超过3m,底宽不小于0.6m,其两壁的坡度按土质和探槽的深浅合理放坡:①深1m的浅槽中,两壁坡度为90°;②深1~3m的槽中,密实土层为70°~80°,松散土层为60°~70°,在潮湿、松土层中不应大于55°。

掘进中的技术要求:①人工掘进,禁止使用掘空底部、使之自然塌落的方法;②禁止采用爆破法;③槽壁应保持平整,松石及时清除,严禁在悬石下作业,槽口两边0.5m以内不得有堆放的土石和工具;④槽内有两人以上工作时,要保持3m以上的安全距离;⑤在松散易坍塌的地层中掘进,两壁应及时支护;⑥凡影响人畜安全的探槽,在取得地质成果后,必须及时回填。

探坑、探井的技术要求:①在泥石流的形成区、流通区及堆积区需要进行现场试验的探坑(试坑),其开口的规格,圆形直径一般为Φ500mm,方形为50cm×50cm,深度要求在剥去表层之后不小于0.5m;②泥石流勘查中,探井的规格尺寸:探井深一般不超过10m,开口为圆形的直径为0.8~1.0m,深5m~10m,断面尺寸长×宽为1.2m×0.8m或1.2m×1.0m,考虑到泥石流物质组成颗粒大小差异大,其开口可适当放大,也可采用梯级开挖;③探井掘进技术参数参看《地质勘查坑探规程》。

探槽、探井地质成果:①在开挖掘进时分别对不同单元体岩、土层的岩性、结构、颗粒级配等进行描述、编录,图文应尽量规格化;②探槽要有槽底、两壁的展示图,探井要有展示图,能直观地反映岩、土体的结构及展布,比例尺:1∶25,1∶50或1∶100;③为防治工程提供设计所需的其他资料。

(5)试验

对坝高超过10m以上实体拦挡工程宜进行抽水或注水试验,获取相关水文地质参数;在孔(坑)内采取岩样、土样和水样,进行分析测试,获取岩土体的物理力学性质参数;水样一般只做简分析,拟建的防治工程应增加侵蚀性CO2测定内容。

采集的岩石要能满足表5-11制样的要求,测试数据能够反映岩石的实际性状。

表5-11 室内测试岩样规格表

土样的样品数量及测试要求:①泥石流勘查中,泥石流堆积物的颗粒分级及容重是重要参数,根据泥石流堆积物常含有大颗粒的特点,现场测试采样一般要求500kg左右;②在坝址土体中,每层稳定土层中试样组数一般不少于6组,扰动土样的数量可适当减少;③原状土样的大小,钻孔取样尺寸为直径10cm,高20cm,在坑槽中采样,每组样品尺寸为15cm×15cm×15cm;④泥石流堆积物的颗粒分析,应将≥2cm以上的颗粒在野外筛分,<2cm颗粒送实验室进行颗分。详见表512。

表5-12 室内测试土样规格

水试样的室内要求:泥石流灾害勘查中,对水样一般只要求作常规项目的分析:在防治工程中,由于大部分工程的基础置于地下水位之下,要求增加CO2的测定。一般简分析样品数量500~1000mL;全分析样品数量200~300mL;侵蚀性CO2样品数量250~300mL,加2~3g大理石粉。

5.对各类防治工程提供以下主要设计参数

1)各类拦挡坝:对各类拦挡坝提供主要设计参数是覆盖层和基岩的重度、预载力布置值、抗剪强度,基面摩擦系数,泥石流性质与类型、发生频次,泥石流体的重度和物质组成,泥石流体的速度、流量和设计暴雨洪水频率,泥石流回淤坡度和固体物质颗粒成分,沟床清水冲刷线。

2)其他工程:桩林着重于桩锚固段基岩的深度、风化程度、力学性质,排导槽、渡槽着重于泥石流运动的最小坡度、冲击力、弯道超高和冲高;导流堤、护岸堤和墩着重于基岩的埋藏深度和性质、泥石流冲击力和弯道超高、墙背摩擦角;停淤场着重于淤积总量、淤积总高度和分期淤积高度。

6.施工条件调查

结合可能采取的泥石流防治工程技术,调绘施工场地、工地临时建筑和施工道路的地形地貌,并进行地质灾害危险性评估,测图范围和精度视现场情况而定。

了解泥石流防治工程周围所需天然建筑材料的分布状况,对沙石料质量和储量进行评价。如天然骨料缺少或不符合工程质量要求,须对就近料场的人工料源进行初查。

了解泥石流防治工程周围的水源状况并采样分析,对防治工程生活用水的水质水量进行评价,提出供水方案建议。

7.监测

泥石流监测内容,分为泥石流形成条件(固体物质来源、气象水文条件等)监测、运动特征(流动动态要素、动力要素、输移冲淤等)监测和流体特征(物质组成及其物理化学性质等)监测。

1)勘查阶段:只要求进行简便的常规监测。

2)降雨观测:必要时,根据流域大小,在流域内设置1~3个控制性自记式雨量观测点,定时巡视观测。观测点的设置要避免风力影响和高大树木的遮掩。

3)泥位、流速观测:有条件时,可进行泥位和流速观测。

·泥位观测,观测站应尽可能设在两岸稳定、顺直的泥石流流通河床段。观测断面可设置2个或2个以上。用简便的断面索法观测泥位的涨落过程,精度要求到0.1m。条件许可时,泥位也可采用有线或无线传感器及探头遥测(如超声水位计、泥位检知网、泥位检知线等)。

·泥石流流速观测必须和泥位观测同时进行,数值记录要和泥位相对应。一般采用水面浮标测速法。

4)预警预报:出现泥石流临灾征兆时,应及时报告有关部门进行预警预报。泥石流警报,首先要确定预警预报参数临界值,如泥位观测报警的泥位临界值、地声报警的地声临界值、暴雨报警的雨强临界值。

·断面泥位观测法:当监测断面泥位达到警戒值时,立即发出预警信号;当监测断面泥位达到避难泥位时,则发出警报信号。

·传感法:将泥石流传感器、地震传感器、地声传感器、超声泥位计、泥位高度检知线等安装在沟谷适当地点(超声探头必须安装在流域中、下游的主河床内),这样可以保证泥石流流量处在一个较稳定的范围内,减少泥石流规模报警的误差。当泥石流发生时,传感器接受信息,进行预警或报警。

5)监测资料整理分析:除对泥石流监测原始记录进行整理编目外,还应将监测数据进行重新编号,形成泥石流监测的正式项目。如条件具备,应建立成果数据库,把全部编目资料存入计算机,以供有关人员查阅。

与泥石流地声传感器相关的内容

其他城市天气预报