导航:首页 > 气候百科 > 近年来气候变化研究动向

近年来气候变化研究动向

发布时间:2021-07-20 23:31:55

1、中国近年气候变化?

水资源和荒漠化●气候变化使得我国水资源供需矛盾不断增加,尤其是华北、西部地区。随着经济和人口的增长,这种情况正变得越来越严重。●近年来,中国北方地区水资源量明显减少,其中,黄河、淮河、海河和辽河区最为显着,水资源总量减少12%,其中海河区地表水资源量减少41%、水资源总量减少25%。虽然南方地区水资源相对丰富,河川径流量和水资源总量近年来有所增加,但由于降雨规律的反常变化,加之高温,近年也出现了区域性缺水的现象。●上世纪60年代以来,随着气候变暖变干,华北部分地区的土地荒漠化趋势加重。西北地区农牧交错带边缘和绿洲边缘区的沙漠化土地面积也可能增加。●与此同时,中国西部82%的冰川正在退缩。长江、黄河等主要江河发源于青藏高原的冰川,随着冰川融水资源逐渐耗尽,我国的水资源供给会受到长期威胁,尤其是主要靠冰川融水供给江河径流的西部地区。农业和粮食安全●农业生产对气候变化非常敏感,这会导致农业生产的不稳定性增加,高温、干旱、虫害等因素都可能导致农业减产。如果不采取适应措施,到2030年,中国种植业生产能力在总体上可能会下降5~10%;小麦、水稻、玉米三大农业作物均以下降为主,到21世纪后半期,产量最多可下降37%。同时气候变化会对农作物品质产生影响,如大豆、冬小麦和玉米等。●气温升高会导致农业病、虫、草害的发生区域扩大,危害时间延长,作物受害程度加重,从而增加农业和除草剂的施用量。此外,气候变化会加剧农业水资源的不稳定性与供需矛盾。总之,气候变化将严重影响我国长期的粮食安全。海平面上升●半个世纪以来,我国沿海海平面平均每年上升为2.5毫米,50年上升了12.5厘米。上海的每年上升幅度更高达3.2毫米,50年上升16厘米,远高于全国平均值。预计到2100年,华南海平面的上升范围可达60~74厘米。●海平面上升不仅会加大沿海低地的淹没面积,加重河口地带盐水入侵,加剧海岸侵蚀,还会对滨海湿地、红树林和珊瑚礁生态系统造成破坏,进而对沿海渔业带来不利影响。面临洪灾、海水入侵、土地侵蚀流失、强热带风暴的威胁,人口密集、经济发达的长三角、珠三角、黄河三角洲的城市群是最脆弱的地区。●多年来我国沿海强热带风暴造成的经济损失占相应年份全国GDP的比例平均为0.25%,2006年是近10年来台风和强热带风暴伤亡最严重的年份,直接经济损失达699亿元,占全国GDP的0.34%。公共健康●由于热浪频率和强度增加,心血管病、中暑等疾病发生的程度和范围也会随之加大。疟疾、登革热等热带流行疾病的发生和传播的机会与范围也会增大。此外,随着洪涝灾害加剧,灾后的感染性腹泻,如霍乱、痢疾等病例也会增加。另外气温升高也使疫区扩大,受威胁人口也会相应增加。例如,有研究预测在未来二氧化碳浓度加倍的条件下,中国鼠疫疫源地的面积将增大40%左右。

2、气候变化趋势与影响

基于过去近百年来仪器观测数据,国际科学界认识到地球气候正经历一次以全球变暖为主要特征的显著变化过程。政府间气候变化专门委员会(IPCC)第三次评估报告表明,1861年以来全球平均表面温度不断上升,20世纪上升幅度为0.6℃±0.2℃;随着全球平均表面温度的上升,雪盖和冰川退缩,海平面上升,大气和海洋环流发生变化,气候变率增大,极端天气气候事件增多;北半球陆地中高纬度地区20世纪降水量极可能增加了5%~10%,20世纪下半叶严重降水事件发生频率可能增加了2%~4%[6]。近百年来的气候变化已经给全球自然生态系统和社会经济系统带来了重要影响。现有研究结果预测,未来50~100年全球气候将继续向变暖的方向发展。这种变化可能会对全球地质环境造成深远的影响,其影响可能是负面的或不利的。

(一)未来中国气候变化趋势

中国科学家对近100年和近50年中国的气候变化历史进行了系统研究,研究发现:中国的气候变化与全球变化有相当的一致性,但也存在明显差别。在全球气候变暖背景下,近100年来中国年地表平均气温明显增加,升温幅度约为0.5~0.8℃,比全球同期平均值略强;从全国平均来看,近100年和近50年的降水量趋势不明显,但1956年以来出现了微弱增加趋势;近50年来中国主要极端天气气候事件的频率和强度出现了明显变化,寒潮事件频数显著下降,华北和东北地区干旱趋重,长江中下游地区和东南地区洪涝加重[7]。

2007年1月,中华人民共和国科学技术部、中国气象局和中国科学院等部委联合发布了《气候变化国家评估报告》,系统总结了我国在气候变化方面的科研成果,评估了在全球气候变化背景下中国近百年来的气候变化观测事实及其影响,预测了21世纪的气候变化趋势。该报告预测,21世纪我国气候变化将呈现以下趋势[7]:

(1)气候变暖趋势不可避免。21世纪中国地表气温将继续上升,其中北方增温大于南方,冬春季增温大于夏秋季。气候模式模拟结果表明:与2000年比较,2020年中国年平均气温将增加1.1~2.1℃,2030年增加1.5~2.8℃,2050年增加2.3~3.3℃;降水量也呈增加趋势,预计到2020年,全国平均年降水量将增加2%~3%,到2050年可能增加5%~7%。降水日数在北方显著增加,南方变化大。

(2)气候变率增大。HadCM2模式模拟结果表明,在CO21%增长率情景下,2020年、2050年和2080年增温最大的月份与最小月份之差分别可达到0.8℃、1.0℃和1.3℃;在CO20.5%增长率情景下,虽然极端值的差别没有1%情景下的差别那样明显,但是也可以明显看出季节之间增温的幅度增大。随着温室气体浓度的增加,地面气温增量的年较差也不断增大。与地面气温增量的季节变化类似,降水量变化的年较差也随着温室气体浓度的增加而不断增大。

(3)极端天气气候事件增加。未来中国的极端天气气候事件发生频率可能出现变化。区域气候模式的预估结果表明,中国地区的日最高和最低气温都将升高,但最低气温的升高更为明显,气温日较差将进一步减小。未来南方的大雨日数将显著增加,暴雨天气可能会增多。

(二)气候变化对地质环境的影响

过去半个多世纪中国地质环境变化是在自然驱动因素和人为驱动因素共同作用下的结果。由于人类活动变化的剧烈性和持续性,地质环境变化更多地表现为人为驱动因素作用下的结果。气候变化所造成的地质环境变化,往往为人类活动干扰所掩盖,为研究工作带来了极大困难。目前,关于气候变化对环境影响的研究刚刚起步,定量评估方法和结果还存在很大的不确定性[7]。根据未来中国气候变化趋势,可以推断出对地质环境的可能影响,主要包括以下几个方面:

(1)大雨日数与强降水事件的增加,可能会诱发更多的突发性地质灾害。滑坡、崩塌、泥石流等突发性地质灾害主要是由暴雨所诱发的。据全国县、市地质灾害调查统计,暴雨所诱发的滑坡占所调查滑坡总数的90%,暴雨所诱发的崩塌占所调查崩塌总数的81%[8]。滑坡、崩塌、泥石流等突发性地质灾害发生频次与强降水事件呈正相关关系。区域气候模式模拟结果表明,在2070年前后,中国南方地区在温室效应作用下,大雨日数将显著增加,特别是在东南地区的福建和江西西部,以及西南地区的贵州和四川、云南部分地区,未来暴雨发生的天气会增多(表5-1)。强降水事件增多的地区,多是突发性地质灾害中、高易发区。所以,未来暴雨诱发的突发性地质灾害在一些地区可能呈现出增加的趋势。

表5-1 区域气候模式模拟的2070年中国各大区平均降水变化表单位:%

资料来源:据《气候变化国家评估报告》

(2)极端天气气候事件的增多,可能会导致对地下水的依赖程度增加。模拟结果表明,未来50~100年,北方部分省份(宁夏、甘肃、陕西、山西、河北等)多年平均径流深减少2%~4%,南方部分省份(湖北、湖南、江西、福建、广西、广东、云南等)增加24%,北方水资源短缺现状还将继续。对未来气候变化趋势的预估,未来20年中国夏季降水存在着由南涝北旱型向南旱北涝型转变的可能性。未来气候变率的增大和干旱、洪涝等极端天气气候事件的增加,可能对现有的水资源供给格局形成挑战,经济社会的水资源保障程度相应地受到影响。由于地下水时空分布具有相对广泛、均衡的特点,在降水与地表水变数增加的情况下,经济社会对地下水的依赖程度可能会有所增加,开采地下水所诱发的地质环境问题亦随之增加。2009年秋至2010年春西南地区长达5个多月的干旱灾害,证实了这种可能性的存在。旱灾波及云南、贵州、广西、四川、重庆西南5个省(区),旱情持续时间之长、受灾面积之大、影响范围之广,为百年一遇。以云南省为例,2009年7月1日至2010年1月20日,平均降水量比多年同期偏少了29%,为气象观测记录以来同期最少降水量[9]。为解决旱灾造成的人畜饮水困难,各地启动了抗旱找水打井工作。据国土资源部统计,截至2010年6月,国土资源系统在云南、贵州、广西3省(区)的26个市(州)156个县(区),共完成2703眼,成井2348眼,累计日出水量36×104m3,解决了520万人饮水问题[10]。入汛以后,南方连续出现了8次大范围强降雨过程,广西大部、湖南南部、广东、福建、江西等地局部出现强暴雨,降水量比往年多5成以上。受长时间干旱和短时间多次强降雨的作用,广西、四川、江西等地出现了多个“天坑”[11]。中国地质调查局经过调查认为:这些“天坑”实际上是地面塌陷,主要发生在岩溶区,因长期干旱、强降雨等气候因素和工程建设、地下水抽采等人为活动引发形成。

(3)受海平面上升和极端气候事件影响,海岸带地质环境恶化风险加大。中国沿海海平面近50年来总体呈上升趋势,平均上升速率约为2.5mm/a[12]。据预测,未来气候变暖,入海河流水量的减少,将加重河口盐水入侵,海平原上升和入海河流泥沙量的减少,将加剧海岸侵蚀,黄河三角洲增长减缓,甚至衰退,海岸低地被淹的范围将可能增加[13]。海岸带是中国人口密集、经济发达的地区,应对全球变化对地质环境造成的负效应,应及早未雨绸缪。

3、未来气候变化趋势

在对近几百年和几千年的气候变化规律研究的基础上,对未来气候变化趋势有两种完全相反的观点,即增温说和降温说。

1. 增温说

气象记录表明,近 100a 全球的年均温度是在上升的,尽管幅度不是很大(0. 3~0. 6℃),但这是事实。认为导致近 100a 温度上升的主要因素是人为排放大量的温室气体,主要为 CO2,自工业革命以来排放的 CO2在不断地增加(图 11-38),而且未来还会继续增加。而同时,由于人类活动的加强,陆地森林覆盖面积在不断地减少,使 CO2的吸收也在减少。除了大气中CO2浓度增加能说明气候升高以外,高山和两极地区的冰川也在融化、面积缩小,海平面上升都在说明地球气候有变暖的趋势。

图 11-38 全球大气二氧化碳浓度与气温变化曲线示意图(据陶世龙等,1999)

该观点最根本的依据就是温室效应。温室效应是一种物理现象,简单来说就是大气中的温室气体吸收了来自地面的长波辐射而使气温升高的现象。大气中的温室气体主要有 H2O、CO2、CH4、N2O 等,其中前三种最为主要,是温室效应最重要的贡献者,其中 CO2的贡献占56. 7% 。当太阳短波辐射(在可见光和紫外光波长范围内)穿过大气层时,除约 1 /3 被反射回太空,很少部分被大气中气体所吸收外,其余的到达地面。地面物质吸收了太阳辐射后其温度升高,又以长波的形式向外辐射。而大气中的 H2O、CO2、CH4、N2O 等气体对来自地面的长波辐射具有较强的吸收能力,从而把热量截留下来,使气温升高,这就是温室效应的过程。大气中的温室气体既有来自自然作用过程,如火山爆发喷出的气体,沼泽地生物化学过程释放的气体,水体蒸发和植物蒸腾等; 也有来自人类活动,如工业生产、交通、有机物质燃烧等。但是前者通过自然作用过程可以达到平衡,而后者是 “额外”增加的,这就引起气候变化。自工业革命以来,大气中的温室气体的确增加了不少,其中 CO2从工业革命前的 280 × 10- 6到1998 增加到 365 × 10- 6。根据温室气体增加的速率估算,预计本世纪 2020 年大气中 CO2浓度较工业革命前将增加 1 倍,全球年均温升高 1. 8℃(在 1. 3~2. 5℃ 之间),到 2070 年将升高3. 5℃(在 2. 4~5. 1℃ 之间)。与此同时,降水将增加 15% ,而冰川融化,使海平面以 0. 6cm /a 的速度上升,到 2050 年将升高 20cm。

但是,有些研究者认为由于海洋和森林对大气中 CO2具有净化作用,而且也不清楚大气中CO2净增量及其多少数量用于大气气候增温上,以及一些预测模型未考虑尘埃和气溶胶的制冷作用,人类也在想办法减少温室气体的排放量。因此,对 CO2的增加是否一定就导致全球气候变暖,或者升温的幅度是否有预测那么大,不同学者持有不同的观点。

2. 降温说

这种观点不同于增温说,其基础是对第四纪气候自然变化规律研究的成果。对近几万年和几千年的气候研究发现,温暖的间冰期或间冰阶有的只有 10ka,而全新世是一个温暖的间冰期,这个温暖的时期将要结束; 对地球吸收太阳辐射影响较大的黄赤交角现在正往变小方向移动(图 11-39)。在天文周期的影响下,今后地球气候有往变冷方向发展的趋势,一个新的冰期将要来临。

图 11-39 近 0. 25Ma 来黄赤交角变化趋势图(据 H. 海斯,1976)

这个新的冰期从何时开始? 是从今后一百年或两百年开始,还是几千年开始,这并不重要,重要的是今后地球气候变化的趋势。尽管人类活动释放温室气体,在短时间内可造成气候的升温,甚至可升高数度。但是地球气候的冷暖波动是一个最基本的规律,现今是一个温暖的间冰期,那么今后必将出现冷的冰期,人类活动是不能改变在自然因素作用下地球气候变冷的总趋势的(图 11-40)。

图 11-40 今后 25ka 气候变化预测示意图(据米切尔,1977)

思考题

1)如何理解第四纪气候标志? 为什么这些指标可作为第四纪气候标志?

2)在应用第四纪气候标志时,应注意哪些方面?

3)第四纪气候波动有哪些特征?

4)为什么通过气候指标得到的全球气候变化不完全同步?

5)影响第四纪气候波动的主要因素是什么? 为什么?

6)对未来的气候变化(不同时间尺度)如何预测?

4、气候变化研究进展是一级核心期刊吗

是的。
《气候变化研究进展》创刊于2005年5月,由中国气象局主管、国家气候中心主办,是我国在气候变化研究领域内由自然科学和社会科学相结合的综合性学术期刊。
2008年6月,《气候变化研究进展》被中国科学技术信息研究所中国科技论文统计源期刊收录,成为“中国科技核心期刊”。2009年3月,《气候变化研究进展》又被《中国科学引文数据库》(CSCD)收录。 根据中国科学技术信息研究所2009年版《中国科技期刊引证报告(核心版)》的数据,《气候变化研究进展》(中文版)的影响因子为1.560,在大气科学领域的核心期刊中排名第4。 根据2010年版《中国科技期刊引证报告(核心版)》的数据,《气候变化研究进展》(中文版)的影响因子为1.426,在大气科学领域的核心期刊中排名第3。

5、请问目前研究气候变化的主要方法有哪些?能详细就详细点~谢谢

研究气候变化影响的方法,通常有三类。(1)实验室模拟或现场观测实验方法;(2)历史相似或类比法;(3)在计算机上进行的数值模拟和预测的方法。以下将分别介绍(1)和(3)两类方法的进展。

3.1实验室及现场观测实验研究

为进行实验研究,首先建立和发展了各种实验模拟装置和技术,其中包括生物遗传控制技术、控制环境装置和技术,开顶式气候室、天然CO2场等,近年来得到迅速发展(刘世荣等,1996)。借助这些装置可以在人工模拟CO2增加的大气环境中对植物或作物的生理、生长的变化进行研究,或者在一定的控制条件下,在实验室或野外进行实验,或观测,以研究种群生长与竞争,群落结构与生产力,甚至生态系统的功能等。比如,在开顶式CO2浓度倍增的培养室中,对植物的生态、生理、生化及形态变化进行研究,分析植物对CO2倍增的反应机理等。

为了在野外进行实验研究,已发展了各种野外观测技术,如用红外分析方法并配置附加气路、电路系统,同步进行农田小气候观测和作物生长发育观测(于沪宁等,1993,于沪宁,1993)。已初步建立了测定土壤—植被系统温室气体排放通量的方法,对中国典型的陆地生态系统(包括农田、森林、草地等)的温室气体排放通量和扩散规律进行了长期的野外定位观测,对CO2通量进行了细致的观测研究。为了探讨CO2浓度增加对作物生产力的直接效应,在不同地力的农田,于冬小麦和夏玉米旺盛生长期放CO2气体,使作用群体冠层中保持空气CO2浓度倍增,用红外CO2分析系统监测CO2浓度,设置CO2释放系统以调节控制试验小区的CO2浓度,同时观测作物生长发育与产量效应。此外,为了解生态系统或生命带对CO2浓度变化的响应,近年来,许多单位还开展了不同波段的遥感观测,正在建立CO2监测网络。

3.2模式研究

使用计算机进行数值模拟和预测研究,近年来得到了迅速发展,这类方法为气候变化及其影响研究的定量化提供了最科学最有效和最理想的方法。目前,研究农业、林业、水资源或自然生态系统对全球气候变化响应的模式可概括为静态的,或经验统计模式,和动态的或过程模式两种类型。

6、近年来世界气候变化和许多国家采取的措施以及你认为应该采取的措施有哪些?

原因:(1)森林砍伐和农业的扩展,使得温室气体大量排出,大量吸收太阳长波辐射;(2)化石燃料的大量使用和低效能消耗;
后果:(1)温室气体增加造成全球变暖,继而造成两级冰川融化,海平面上升;(2)造成降水量分布不均匀,干旱缺水现象加剧;(3)气象灾害频发,例如暴雨、干旱、厄尔尼诺现象、拉尼娜现象。
应对措施:(1)减少化石燃料使用,提高燃料利用效率;(2)开发新能源,改变能源利用结构,使用太阳能、风能、等清洁能源;(3)控制和制止森林的乱砍滥伐和农业面积的扩展,大力开展植树造林,利用植物的光合作用吸收温室气体,减少温室气体含量

7、气候变化的调查及其原因分析的研究报告

在地质历史上,地球的气候发生过显著的变化。一万年前,最后一次冰河期结束,地球的气候相对稳定在当前人类习以为常的状态。地球的温度是由太阳辐射照到地球表面的速率和吸热后的地球将红外辐射线散发到空间的速率决定的。从长期来看,地球从太阳吸收的能量必须同地球及大气层向外散发的辐射能相平衡。大气中的水蒸气、二氧化碳和其他微量气体,如甲烷、臭氧、氟利昂等,可以使太阳的短波辐射几乎无衰减地通过,但却可以吸收地球的长波辐射。因此,这类气体有类似温室的效应,被称?quot;温室气体"。温室气体吸收长波辐射并再反射回地球,从而减少向外层空间的能量净排放,大气层和地球表面将变得热起来,这就是"温室效应"。大气中能产生温室效应的气体已经发现近30种,其中二氧化碳起重要的作用,甲烷、氟利昂和氧化亚氮也起相当重要的作用(见表 2)。从长期气候数据比较来看,在气温和二氧化碳之间存在显著的相关关系(见图 1)。目前国际社会所讨论的气候变化问题,主要是指温室气体增加产生的气候变暖问题。 表 2 主要温室气体及其特征 气体 大气中浓度(ppm) 年增长(%) 生存期(年) 温室效应(CO2=1) 现有贡献率(%) 主要来源
CO2 355 0.4 50-200 1 55 煤、石油、天然气、森林砍伐
CFC 0.00085 2.2 50-102 3400-15000 24 发泡剂、气溶胶、制冷剂、清冼剂
甲烷 1.714 0.8 12-17 11 15 湿地、稻田、化石、燃料、牲畜
NOX 0.31 0.25 120 270 6 化石燃料、化肥、森林砍伐
引自全球环境基金(GEF):Valuing the Global Environment,1998 本世纪以来所进行的一些科学观测表明,大气中各种温室气体的浓度都在增加。1750年之前,大气中二氧化碳含量基本维持在280ppm。工业革命后,随着人类活动,特别是消耗的化石燃料(煤炭、石油等)的不断增长和森林植被的大量破坏,人为排放的二氧化碳等温室气体不断增长,大气中二氧化碳含量逐渐上升,每年大约上升1.8ppm(约0.4%),到目前已上升到近360ppm。从测量结果来看,大气中二氧化碳的增加部分约等于人为排放量的一半。按照政府间气候变化小组(IPCC)的评估,在过去一个世纪里,全球表面平均温度已经上升了0.3℃到0.6℃,全球海平面上升了10到25厘米。许多学者的预测表明,到下世纪中叶,世界能源消费的格局若不发生根本性变化,大气中二氧化碳的浓度将达到560ppm,地球平均温度将有较大幅度的增加。政府间气候变化小组1996年发表了新的评估报告,再次肯定了温室气体增加将导致全球气候的变化。依据各种计算机模型的预测,如果二氧化碳浓度从工业革命前的280ppm增加到560ppm,全球平均温度可能上升1.5℃到4℃。 图 1 大气二氧化碳浓度和气温变化

与近年来气候变化研究动向相关的内容

其他城市天气预报