导航:首页 > 气候百科 > 湖北麻城水文地质气候

湖北麻城水文地质气候

发布时间:2021-07-26 03:31:09

1、水文地质调查

通过15a的工作,水文地质调查在地下水资源评价、重点地区水文地质调查、严重缺水区与劣质水地区地下水勘查、地下水污染调查等方面取得了显著进展。

完成了新一轮全国地下水资源评价与北方平原盆地地下水资源及其环境问题调查评价。2000~2002年,以省级行政区为单元完成了全国新一轮地下水资源调查评价,查明了自1984年以来全国地下水资源数量与质量的时空变化、开采潜力等总体状况,编制了《中国地下水资源与环境图集》,包括序图组、全国性图组、地区性图组和分省图组共126幅图,为国家水资源规划和管理提供了科学依据。2003~2013年,以平原盆地为单元,开展了区域地下水资源及其环境问题调查评价。完成了北方11个主要平原盆地地下水资源及其环境问题调查评价,总结了主要平原盆地区域水文地质规律或特征,评价了主要平原盆地地下水资源量、调蓄能力、环境与生态功能;完成了河套平原、江汉-洞庭平原、共和盆地等地下水资源及其环境问题调查评价工作,掌握了水文地质条件、地下水水量与水质状况。编制完成了亚洲水文地质图、地下水资源图与地下水环境背景图(1∶800万)。开展了华北平原、松嫩平原、银川平原、河西走廊、鄂尔多斯盆地、准噶尔盆地地下水动态调查,运行完善了华北平原地下水动态评价数值模型,对华北平原地下水资源进行了再评价。

持续推进西南岩溶地区、重要能源基地等重点地区水文地质调查。2003~2013年,开展了西南岩溶地区地下水与环境地质调查,在西南岩溶干旱缺水和石漠化重点地区,以岩溶流域为单元,开展了1∶5万水文地质和环境地质调查。通过调查,掌握了西南岩溶区主要水资源环境问题,调查了岩溶水资源状况及其开发利用潜力,查清了调查区岩溶石漠化的分布状况及其发展趋势;查清了典型岩溶流域水文地质条件和环境地质问题,针对不同类型区开发条件,建立了岩溶地下水开发利用与生态环境综合治理模式。近年来,在宁东、准东、东胜、青海、冀中等重要能源基地开展了水文地质环境地质调查工作,通过重点区1∶10万和1∶5万水文地质调查,提高区域水文地质调查精度,进一步查明了能源基地主要区域含水系统、含水层结构、地下水动力场演化,深化了能源基地水文地质结构认识。2011年以来,开展了鄂尔多斯盆地、柴达木盆地、塔里木盆地等西北大型盆地水文地质调查,探索推进重点地段1∶5万水文地质调查,加深对大型盆地水文地质条件的认识。以青藏铁路沿线为重点,开展了青藏高原重点地区水文地质环境地质调查,通过填补区域1∶25万水环地质调查空白区和重点区1∶5万水文地质调查,选择适宜地段进行地下水探采结合井开展了地下水供水示范。

严重缺水区与劣质水地区地下水勘查推动了大量居民用水困难的解决。在西南红层地区、黄土高原、西北内陆盆地、山地高原缺水区、北方饮水型地方病区以及四川大骨节病区等典型地区,开展了以解决人畜缺水困难为目标的地下水勘查与示范工程。通过10多年的工作摸清了我国西北、东北、华北、西南15个省(市、区)的缺水区背景条件,形成了一套有效的工作方法,总结出西北干旱区一系列地下水富集模式,深化了对区域规律的认识,探索出西南红层浅层地下水开发利用新模式,研究了高砷高氟地下水分布与形成规律,总结了地下水赋存模式,建立了不同缺水区地下水勘查技术方法体系,开发出一批新仪器、新材料和新技术,形成地调投入勘查示范为主,多渠道投资地下水勘查的新机制。2011年以来,在宁夏中南部地区、陕甘宁革命老区、太行山集中扶贫区等严重缺水地区和西藏大骨节病地区、四川阿坝州等地方病区开展了水文地质调查和地下水勘查,完成了一批1∶5万水文地质调查图幅,结合地方需求,实施探采结合孔和供水示范井,推动了贫困地区饮水困难的解决。2010年和2011年为应对极端干旱气候,分别组织实施了滇黔桂地区和华北地区抗旱找水打井工作,有力地支持了当地抗旱工作。

地下水污染调查获得了我国地下水污染状况基础数据。2005年启动了我国地下水污染调查评价工作,首先对珠江三角洲、长江三角洲、淮河流域平原、华北平原进行了调查,然后又依次对东北下辽河平原、松嫩平原、三江平原、中西部主要城市、东南地区等开展了调查,预计到2015年可完成全国首轮地下水污染调查。通过1∶25万区域地下水污染调查,构建了地下水污染调查评价测试分析技术体系,取得了海量地下水质量与污染的调查数据,基本查明了区域地下水水质和污染状况,初步掌握全国重点地区地下水污染程度,构建了地下水污染信息系统,编制了地下水污染防治区划,为各级政府部门提供了大量区域地下水质量、地下水污染等基础资料。地下水污染调查表明有很多地区地下水水质严重恶化,引起了政府部门的高度重视,促进了《全国地下水污染防治规划(2011~2020年)》的出台。

2、示范区地质环境及水文地质条件

4.1.2.1 楚雄示范区

楚雄市处于滇中红层区中西部,是楚雄彝族自治州、楚雄市两级政府所在地和政治、经济、文化中心,辖区范围地理坐标为:东经100°52′50″~101°48′58″,北纬24°29′11″~25°15′12″。2004年末总人口49.4万人,农民人均年纯收入2304元。国土面积4482km2,其中红层分布面积3422km2,占市辖面积的76%,集中分布于中东部的15个乡镇。全市共有缺水人口48699人,缺水大牲畜29678头,涉及19个乡镇372个自然村,东部坝区乡镇是缺水较为严重的地区。

勘查示范区位于楚雄市东部,涉及苍岭、富民、永安、云龙、紫溪5个镇(图4.2)。除落花冲、小云甸示范点处于元江水系外,其余均处于金沙江支流龙川江流域。按示范点开采的地下水类型,主要有溶蚀裂隙孔隙水和层间裂隙水;按示范点所处的地貌类型,主要为向斜盆地、丘陵和山间河谷。

示范区地处滇中红层腹地,为金沙江、元江的分水岭地带,属侵蚀、剥蚀中山地貌,高原台面保存相对完好,山顶齐平,宏观地形连绵舒展,切割较浅,总体为平直垅状山脊与宽缓沟谷相间。以中深丘槽谷和浅丘宽谷地貌为主,局部为低中山斜坡地貌,沿龙川江及其支流串珠状展布着吕合、楚雄、饱满街、腰站街、子午、新街等河谷盆地。盆地内地形低缓,外围为丘陵低山,局部为低中山区,一般切割深50~300m。村寨主要坐落于盆地、宽谷中的河流阶地或边缘缓坡,以及山区、半山区的斜坡、台地或沟源缓坡地带。

示范区属亚热带高原季风气候区。据楚雄市气象站观测资料,1971~2004年多年平均降雨量900.25mm,最丰年降雨量 1342.80mm(2001年),最枯年降雨量 485.80mm(1980年);多年平均水面蒸发量1809.40mm,蒸发最强期为3~5月。降雨80%以上集中在6~10月,冬春季节干旱少雨,最长连续无降水日数在100天以上;立体气候突出,降雨量随高程的增加而增大;枯雨季分明。区内水资源时空分布不均,除龙川江、马龙河、打苴河等主干河流外,支流沟谷大多短浅,冬春季节久旱无雨而无长年流水。

图4.2 楚雄示范区地貌类型及勘查示范点分布图

1—低中山斜坡地形;2—中深丘槽谷地形;3—浅丘宽谷地形;4—河谷盆地;5—地貌类型界线;6—地表分水岭;7—河流;8—市县界线;9—乡镇界线;10—州市政府驻地;11—乡镇政府驻地;12—勘查示范点及地名

示范区大面积出露侏罗系、白垩系红色地层,盆地、宽谷有第四系冲洪积砂质粘土、砂砾石层分布,一般厚5~20m。侏罗系中、下统以泥质岩为主间夹砂岩,上统妥甸组(J3t)为钙质泥岩夹泥灰岩。白垩系高峰寺组(K1g)、马头山组(K2m)以砂岩为主,砂岩层厚占地层总厚的70%~90%;普昌河组(K1p)、江底河组(K2j)则以粉砂质泥岩、钙质泥岩和泥灰岩等泥质岩为主,间夹粉细砂岩,局部含膏盐层。红层岩性总体上以泥岩、粉砂质泥岩为主间夹粉细砂岩、泥灰岩等,显示出泥岩—粉砂质泥岩—泥质粉砂岩—粉细砂岩的多旋回沉积特征。受构造影响,岩层倾角较陡,多在20°~50°间,局部近于直立甚至倒转,构造裂隙发育。

勘查示范区以复式向斜构造为主体,并发育有次级褶皱及派生的纵向断层。平行分布有新街-子午街向斜、楚雄向斜、腰站街-饱满街向斜和高峰哨断层、迤干断层等,构成了示范区的基本构造格局(图4.3),褶皱形态从西到东由紧密长轴型向宽缓短轴型(穹隆、碗状向斜)转化。向斜核部多为江底河组(K2j),向两翼依次是马头山组(K2m)、普昌河组(K1p)和高峰寺组(K1g),至背斜核部变为妥甸组(J3t),并形成背斜成山、向斜成盆谷的地貌景观。

图4.3 楚雄市勘查示范区构造纲要图

1—第四系;2—中新统;3—白垩系;4—侏罗系;5—逆断层;6—平移断层;7—性质不明断层;8—向斜;9—背斜;10—穹隆;11—地层界线;12—不整合地层界线;13—断层编号;14—褶皱编号;15—河流;16—市域界线

断层:7—小瓦古断层;8—小箐河断层;9—观音寺断层;10—高峰哨断层;11—迤干断层;12—孔家庄断层褶皱:(6)—白衣河背斜;(7)—干家箐背斜;(8)—田心向斜;(9)—雪里光背斜;(10)—子午街向斜;(11)—中石坝背斜;(12)—楚雄向斜;(13)—览经穹窿;(14)—饱满街向斜

地下水类型有松散岩类孔隙水、风化裂隙水、层间裂隙水、脉状裂隙水和溶蚀裂隙孔隙水五大类,后四类地下水的含水层都为红层。

松散岩类孔隙水:主要分布于龙川江、马龙河河谷第四系冲洪积层内,含水层以中下部的砂砾石层为主,厚数米至十几米。因受污染较重,一般不能作生活用水,勘查示范也未将其纳入。

风化裂隙水的分布与赋存受基岩风化带的制约。勘查示范区内的红层都形成有风化带,但由于地形地貌、岩性、构造的差异,风化带的发育和空间分布很不均一,富水性差异亦很大。通常在盆地边缘、缓坡台地和泥质岩集中分布地段,风化带保存完好,平面分布面积大,垂向厚度亦较大,地下水封闭条件相对较好,地下水较易富集。而在深丘槽谷和低山区,地形破碎,切割较深,地层倾角普遍较大,风化带发育不全或被沟谷切割完全暴露,封闭条件差,风化裂隙含水层分布零星并仅有季节性贮水功能,不具供水意义。

层间裂隙水主要赋存在裂隙较发育、厚度较稳定的砂岩、粉砂岩层里,富水性强弱有别。高峰寺组(K1g)、马头山组(K2m)地层以砂岩为主,连续砂岩层厚达80~340m,砂岩裂隙率2.0%~7.4%,是示范区主要的层间裂隙含水层,富水性丰富—中等,深井单井涌水量一般大于300m3/d。普昌河组(K1p)则以泥质岩为主间夹厚度不等的砂岩、粉砂岩,砂岩累计厚度一般小于10%,单层厚几十厘米至十数米,裂隙较发育,水量中等—贫乏,深井单井涌水量一般小于100m3/d。

层间裂隙水含水层的富水性在不同构造部位差异较大。断层影响带、褶皱构造转折端,水量丰富。向斜两翼地段的富水性与岩层倾角相关,倾角20°~50°的部位富水性较好,水量较大;地层倒转及陡立(倾角70°~80°)部位,富水性较差。

示范区广泛分布的侏罗系上统妥甸组(J3t)和白垩系上统江底河组(K2j)以泥质岩为主,普遍富含钙质或夹有泥灰岩、泥质白云岩夹层,泥灰岩、泥质白云岩连续沉积厚度可达数十米,岩性层交替频繁。一般均有溶隙和蜂窝状溶孔发育,顺层面溶蚀裂隙、溶孔发育,赋存溶蚀裂隙孔隙水,溶孔、溶隙是其主要的导水、储水空隙。其富水性除受岩层产状和地形等的控制外,还与含水层的钙质含量相关,一般钙质含量越高,溶孔、溶隙就越发育,富水性就越好。溶孔、溶隙的大小、连通性等也影响到其富水性,泥质岩全—强风化层因风化完全多呈土状,并将溶孔、溶隙充填,含水性较差。

脉状裂隙水仅沿断层分布,范围较窄,区内仅在迤干断层带见有。

示范区以褶皱为基本构造格局,地形与构造形态基本一致,新街-子午街向斜、楚雄向斜、腰站街-饱满街向斜等是主要的储水构造,构成以向斜盆地、谷地为中心的水文地质单元。由于向斜翼部多为砂岩层、粉砂岩夹泥岩,核部则以钙质泥岩、泥灰岩等可溶岩层为主,盆地边缘和缓坡台地还有厚度较大的风化层分布,因而就一个盆地来说其地下水类型具有多样性。风化裂隙水大多分布局限、连续性差,往往以一个微地貌单元构成相对独立完整的补、径、排系统,主要为降雨渗入补给,于风化裂隙中顺坡径流,以蒸发、斜坡前缘渗出、人工开采及地下径流等形式进行排泄,地下水动态变化较大,部分仅有季节性贮水功能。层间裂隙水接受降雨和沟、塘等地表水体的补给,由于砂岩含水层与泥岩相对隔水层相间分布,形成相邻沟谷间梁状、脊状分水岭,地下水主要沿砂岩层面、裂隙顺走向、顺坡向径流,由盆周山坡顺坡向盆地内径流汇集,一部分在坡脚或侵蚀谷地内以泉或片状散流的形式排泄,一部分则沿层面向深部径流并在核部富集并作深层径流排泄或沿断裂带溢出,通过蒸发、补给河水排泄,以及人工开采消耗。

示范区地下水动态随降雨和地表水的变化而变化。枯季地下水水位下降,雨季水位上升,水位变幅各地不一,从1~3m到7~8m不等。泉水大多雨季流量大,枯季流量小,一般变幅2~5倍。尤以风化裂隙水变化大,每到枯季一些小流量泉水和农民于红层中开挖的集水池就断流,往往造成部分农民饮水困难。

示范区构造活动较强烈,褶皱、裂隙较发育,地形切割较深,地下水排泄条件较好,水流交替迅速。除河谷第四系冲洪积孔隙水遭受工农业污染严重不能饮用,局部含膏盐地层区水质较差外,其余大多水质较好,地下水化学类型以HCO3-Ca型、HCO3-Ca · Mg型及HCO3·SO4-Ca·Mg型为主,硬度一般小于450mg/L,矿化度大多为200~1000mg/L。盆地内地下水的循环径流深度亦较大,咸、淡水界面埋深一般大于100m,150m以下由于径流循环减弱,盐分、矿物质聚集,层间裂隙水、溶蚀裂隙孔隙水矿化度增高,硫酸根、氯离子、铁、锰等组分超标,并随深度增加,水质变差。

由于季风气候的影响,示范区冬春季节连旱时间长,加之红层对水资源的涵养、调节能力较弱,枯季短浅溪沟、泉水和小坝塘等常常断流、干涸,造成整体上的季节性的资源型缺水。随着农村人口增长、存栏大牲畜增加,需水量猛增,原来的供水源地和工程规模更显得供水不足。近年来,因工业污染加剧,水产养殖业迅猛发展,农药化肥的大量使用,使供水源地受到严重污染,河水、库塘水和松散层孔隙水水质恶化,一些村寨原来的饮用水源变得不能饮用,导致“水质型缺水”的村寨持续增加。现有的农村人饮工程中,有相当数量是管道引水、明渠输水,因普遍运行年限已久,管道老化常常堵塞、破损,渠道太长,受污染极为严重,导致供水极不正常、饮水极不卫生。上述原因导致示范区农村人畜饮用水资源短缺并日趋突出,缺水面较大,干旱时节一些村寨要到几百米甚至一二千米外的江河、库塘中挑水,遇到连旱,更对农村饮水安全构成巨大的威胁。据调查统计,示范区5个坝区乡镇共有缺水村庄144个,缺水人口4890 户22291人,缺水大牲畜8320 头,缺水类型以季节性的资源型缺水和水质型缺水为主,部分为工程型缺水。寻找新的洁净水源、探索新的取水技术和途径用于解决农村人畜饮水困难具有重要意义。

示范区先后有不少单位进行过不同目的、不同精度的以盆地为中心的水文地质工作。以往的水文地质工作都着重于寻找大中型集中供水水源地,勘查的目标含水层主要是高峰寺组(K1g)、马头山组(K2m)的砂岩和江底河组(K2j)钙质泥岩、粉砂岩、泥灰岩等,并将单井涌水量小于100m3/d、泉流量小于0.1 L/s、地下水径流模数小于0.1 L/s·km2的含水层列为不具开采意义的含水层,对泥质岩集中分布区的砂岩夹层的赋水性及其供水意义未进行专门的研究,对不同地貌单元、不同含水介质条件下风化裂隙水的富水性、动态特征、水质等情况了解不够,适合农村缺水地区分散式供水的工程经验不足。

4.1.2.2 大姚示范区

大姚县位于楚雄州北部,地理坐标为:东经100°53′~101°42′,北纬25°33′~26°24′,面积4146km2,皆为红层,仅白垩系地层就占县域面积的60%以上。2004年年末总人口280272人,农业人口占91.54%,农业产值2.9亿元,农民人均纯收入600~2200元。全县有71419人存在饮用水困难,涉及全部乡镇、94个村委会、338个自然村、11371户。

勘查示范区位于大姚县中南部,涉及新街乡、仓街镇2个乡镇,主要示范点布置在中学、小学和缺水村庄(图4.4)。按示范点开采的地下水类型,主要有溶蚀裂隙孔隙水和层间裂隙水;按示范点所处的地貌类型,主要为宽谷和丘陵。

勘查示范区地处滇中红层区北部,为金沙江支流蜻蛉河中游地带。中部以丘陵地貌为主,沟谷发育,相对高差80~150m;地形破碎,山脊线连续性差,但总体伸展方向可辨;谷坡上缓下陡,构成垄岗槽谷和丘陵宽谷的地貌景观。向四周渔泡江、六苴河和龙街河的分水岭地带,渐变为低中山地貌,山脊线较完整,山顶浑圆,沟谷呈“V”形,切割深200~500m,山坡坡度25°~35°,支沟树枝状密集发育。总体地貌与昙华山-龙山向斜南段形态协调一致,形成大姚-新街向斜盆地。

区内属亚热带高原季风气候,年均气温15.6℃,年均降雨量796.8mm,5~10月为雨季,降雨占全年的92.4%。最丰年降雨1078.6mm(1961年),最枯年降雨520.0mm(1988年)。年均水面蒸发量2754.0mm,相对湿度65%。蜻蛉河及其支流新街河穿过示范区,沿河谷分布有金碧、仓街、七街、大古衙、碧么等多个不规则堆积盆(谷)地,村庄大多坐落于盆地、谷地边缘,以水库、溪沟、泉水和第四系孔隙水浅井作生活用水水源。受降雨影响,主干河流枯、雨季流量变幅大,枯季一些短小支流、溪沟及泉水流量骤减,以至断流,造成农村生活用水困难。

图4.4 大姚示范区地貌类型及勘查示范点分布图

1—中山地貌;2—低中山地貌;3—垄岗槽谷地貌;4—丘陵宽谷地貌;5—河谷堆积地貌;6—地貌类型界线;7—县、乡镇界线;8—河流;9—地表分水岭;10—县、乡镇政府驻地;11—勘查示范点及地名

勘查示范区出露地层有第四系全新统(Qh)冲洪积层、古近系赵家店组(Ez)、白垩系江底河组(K2j)和马头山组(K1m),以江底河组(K2j)分布最为广泛,几乎遍布整个示范区。第四系全新统(Qh)冲洪积层仅呈带状分布于较大河流沿岸。赵家店组(Ez)、马头山组(K1m)以细—中粒长石或岩屑石英砂岩、粉砂岩为主夹泥岩和钙泥质粉砂岩。江底河组(K2j)则为泥岩、粉细砂岩夹钙质泥岩、钙质粉砂岩及泥灰岩等,其中江底河组三段(K2j3)地层在大姚—芦川—石羊一带分布广泛,突出特点是中部、上部普遍含有蓝石棉和膏盐层,部分层段为岩盐矿层、芒硝矿层和含盐、含钙芒硝岩层,“盐霜”、卤泉较多,是示范内区的主要含盐层,在云南红层中具有代表性,石羊盐厂就是从中抽取卤水制盐。

示范区以近南北向和北西向的宽缓短轴褶皱为主要构造形迹(图4.5),背斜紧密,向斜宽缓,并具有核部地层舒展平缓、两翼岩层倾角向外逐渐变陡的特点。以昙华山-龙山向斜为核心,向外围发育有较多次级同层褶皱,一般呈箱型(屉型)、短轴状,轴向随岩层走向而扭曲,枢纽起伏多变,较小的褶皱在示范区内随处可见,致使岩层起伏多变。

图4.5 大姚勘查示范区构造纲要图

1—背斜轴;2—向斜轴;3—次级背斜;4—次级向斜;5—穹窿构造;6—碗状向斜;7—正断层;8—遥感解译断层;9—地层界线及代号;10—大姚向斜盆地汇水边界;11—水系;12—勘查示范点

地下水类型有松散岩类孔隙水、风化裂隙水、层间裂隙水和溶蚀裂隙孔隙水四大类,脉状裂隙水少见。

松散岩类孔隙含水层为第四系全新统冲积层(Qh),以粘土、有机质粘土、含砾粘土为主,砂砾石层主要分布在蜻蛉河、新街河河谷,在主支沟交汇口附近多呈透镜状分布,水位埋深0.45~1.20m。砂砾石层最大钻孔涌水量129m3/d,民井涌水量116m3/d,富水性与砂砾石层厚度有关。总体上砂砾石层分布较为局限且厚度较薄,勘查示范未将其列入。

风化裂隙水的分布与楚雄勘查示范区类似,具有风化带连续性较差,富水性差异很大,多数风化带仅具季节性储水功能等特点,不具有普遍供水意义,勘查示范也未对其进行专门研究。

层间裂隙水主要赋存于古近系赵家店组(Ez)、白垩系江底河组四段(K2j4)和马头山组(K1m)的砂岩、粉砂岩层中。马头山组(K1m)的岩性组合和赋水特点与楚雄示范区相似,在大姚地区其泉流量为0.8~2.2 L/s,一般地下径流模数0.7~2.5 L/s·km2,最大单井涌水量达2936m3/d,一般为250~800m3/d,最小89m3/d。赵家店组(Ez)上部为砂岩夹粉砂岩及薄层泥岩,下部为泥岩、泥质粉砂岩夹砂岩或砂、泥岩互层,砂岩单层厚度一般小于1m。裂隙发育,面裂隙率2%~5%,张开度好,透水性强。泉流量0.039~3.173 L/s,流量大于0.500 L/s的泉点占35.7%,地下径流模数1.4~3.6 L/s·km2,孔深150~200m的钻孔涌水量80~389m3/d,富水性强。江底河组四段(K2j4)为中层状钙质粉砂岩与泥岩互层,局部夹泥灰岩,地下径流模数0.6~0.7 L/s·km2,泉流量一般为0.10~0.80 L/s,最大 3.34 L/s,最小 0.025 L/s,流量大于 0.50 L/s 的泉点占48.2%,富水性强。

溶蚀裂隙孔隙水赋存于江底河组一~三段(K2j1-3)地层的溶蚀裂隙中。江底河组一、二段(K2j1、K2j2)的含水介质特征与楚雄勘查示范区相同,地下径流模数3.5~4.8 L/s·km2,泉流量一般0.1~1.0L/s,最大达4.2L/s,0.1~0.5L/s的泉点占58%,0.5~1.0L/s的泉点占21%,富水性强,均匀性好。三段(K2j3)因含有盐层易溶蚀,盐溶现象和溶蚀孔洞多见,溶蚀裂隙发育且宽大,因而也赋存有溶蚀裂隙孔隙水。含盐层位一般风化较强,风化带厚度较大,浅部风化层的裂隙多被溶蚀再充填而密闭,风化带富水性较差;而地下水位以下,中—微风化带,裂隙多被溶蚀扩宽,透水性强。导致该段地层富水性较好但不均匀,表现为泉流量数值离散性较大。示范区K2j3地层中出露的45个泉点中,泉流量集中在0.1~0.5 L/s和大于1.0 L/s两个区域,分别占泉点总数的53.4%和22.2%;泉流量小于0.1 L/s和0.5~1.0 L/s的泉点仅占总数的15.5%和8.9%。

地下水总体由大姚-新街向斜盆地四周向中部径流。因沟谷发育、地形破碎,形成很多相对独立的水文地质单元,地下水靠降雨渗入补给,顺坡径流,具就地补给、就近于沟谷底部排泄的特点,宽谷中是地下水富集和打井取水有利场所。由于地形切割深度不大,为松散土层浅覆盖,地下水位埋深3~15m,地下水蒸发和蒸腾强烈。地下水动态在构造侵蚀山区受季节影响较大,泉流量雨季剧增,雨季末期达最大,旱季骤减,甚至干枯,多属峰态型—波态型。在丘陵谷地区,因排泄条件较差,水流交替迟缓,地下水动态季节性水位变幅不明显,一般变幅小于1m,动态稳定,地下水动态类型多属稳态型—波态型。

示范区的岩相古地理、岩石化学成分和地形地貌条件,决定了地下水化学类型的复杂性。江底河组三段(K2j3)以外的地区,石膏、芒硝和岩盐等可溶盐层含量少、分布零星,加之浅部地下水径流排泄较畅、交替迅速,地下水水质普遍较好,水化学类型以HCO3-Ca、HCO3·SO4-Ca·Mg型为主,矿化度一般500~1000mg/L,仅在局部丘陵区弱径流带因滞留盐分较多导致水质超标,大多呈孤立的水点出现。江底河组三段(K2j3)中可溶盐层含量多、分布广,浅部风化裂隙多被垂直淋滤的盐分充填而密闭,地下水径流滞缓,水质复杂,泉水或民井水质都较差,有涩味。地下水化学类型多为SO4· HCO3-Ca、Cl·HCO3-Ca和SO4-Ca型,矿化度大于1000mg/L的微咸水居多,硫酸根、溶解性总固体、总硬度、总铁等多超标,并多呈片状出现。

由于气象水文、地形地貌和地质条件的一致性,大姚示范区的缺水状况和特点与楚雄示范区基本相同。丘陵谷地区人口稠集,城镇规模大,分布密集,工厂较多,农业生产发达,造成了地表水和浅层松散层孔隙水的严重污染。取样化验表明芦川、夏家坝等地的民井和作为饮用水源的沟水,感官性能差,锰、铁含量普遍偏高,微生物指标多超限,甚至还出现砷超标,水质差,按“农村实施《生活饮用水卫生标准》准则”评价多在三级以下;仓街一带的个别民井除亚硝酸盐、总硬度、矿化度、铅超标外,硝酸盐还超标10 倍以上,显示第四系松散层孔隙水遭受了地表污水的入渗污染,地下水的防污性能较差。除水质型缺水外,丘陵谷地区地表水资源相对匮乏,也导致季节性资源型缺水,区内8个乡镇共有缺水人口55028 人,占全县缺水人口的77%,成为大姚农村生活用水最困难的地区。

示范区水文地质研究程度较低,除外围的六苴铜矿进行过矿区水文地质工作外,仅做过1∶20万区域水文地质普查。地下水开发利用程度较低,除民井和零星管井外,没有大规模的、系统的地下水开发工程。根据楚雄红层勘查示范经验,针对大姚示范区可溶盐含量较高、地下水水质复杂多变、咸水多见的水文地质特点,将含盐层分布区寻找可供开发利用的地下水解决农村饮用水困难和进一步验证、总结前期探索出的开发工程的地区适宜性、供水方式的可行性作为研究的主要内容。

3、麻城有哪些农业生产类型它们适合当地的土地气候的特点吗?

麻城的种植业、林业、畜牧业和渔业都比较重要。多样化的农业与当地的地内理环境有密切关系。容麻城市位于湖北省东北部,鄂豫皖三省交界的大别山中段南麓。麻城属大别山区。全境有如马蹄形,三面环山,东、北、西三部分山脉相连,群峰突起。地势东北高、西南低,形成全市总面积40%为山地,30%为低山丘陵,30%为平原的自然地理特点。麻城属亚热带季风气候,光照充足,热量丰富,降水充沛,无霜期长。四季分明,冬冷夏热,雨热同季,年均气温13.0-16.1℃,年平均降水量1111.2-1688.7毫米。

4、麻城的地形和气候特点?

地形地貌

麻城三面环山,东、北、西三部分山脉相连,群峰突起。东部和东北部为高山,西南低,由东向西南倾斜敞开,是高山—中山—低山—高丘—低丘—平原逐渐下降的阶梯式地形。东北的高山康王寨是全市最高点,海拔1337.1米;中南边缘的乌龙寨是全市最低点,海拔25米。地形地貌多姿多彩,平原、丘陵、山区、水域兼有,有“七山一水二分田”之说。大别山脉环绕于本市东及北部边缘地带,境内主峰康王寨雄踞鄂、皖边界,由此沿市境东北边缘及境内向西南纵深及西部边缘延伸出七条山脉,形成全境东、北、西三面山脉相连,群峰逶迤的地貌特征。

气候特征

麻城气候兼南方和北方的某些特点,为南北兼有的气候特征,属亚热带大陆性湿润季风气候,江淮小气候区,山区、丘陵、平原各异。太阳年辐射总量112.5千卡/平方厘米,为全省最高值,年日照时数1634.4—2153.0小时,日照百分率37—48%,光能利用潜力较大。年平均温度16.1℃,无霜期250—270天,≥10℃积温4700—5162℃;年降雨量多年平均为1111.2-1688.7毫米,但四季各月分布不均,雨季多集中在夏季,境内溪流密布,山涧众多,1980条多条大小河流汇成纵贯境内的举水和偏东边的巴水;多年平均径流总量为17.7139亿立方米,偏枯水年11.6496亿立方米,特枯年6.4011亿立方米。总之麻城气候有雨量充沛、日照较长、积温较高等特点,属于全省气候要素较好的县市之一,四季分明,冬冷夏热,雨热同季。

5、水文地质特征

10.3.1 井田水文地质特征

荆各庄井田内共有8个含水层,自下而上分别为:奥陶系灰岩岩溶裂隙承压含水层(Ⅰ)、K2~K6砂岩裂隙承压含水层(Ⅱ)、K6~12煤砂岩裂隙承压含水层(Ⅲ)、9煤~7煤砂岩裂隙承压含水层(Ⅳ)、5煤以上砂岩裂隙承压含水层(Ⅴ)、风化带裂隙、孔隙承压含水层(Ⅵ)、第四系底部卵石孔隙承压含水层(Ⅶ)和第四系中上部砂卵砾孔隙承压和孔隙潜水含水层(Ⅷ)。第Ⅱ、第Ⅲ、第Ⅴ含水层为直接充水含水层,其他含水层为间接充水含水层,其中与矿井生产较密切的为Ⅰ、Ⅱ、Ⅲ、Ⅴ、Ⅶ。

10.3.1.1 矿井直接充水含水层

荆各庄矿直接充水含水层有K2~K6砂岩裂隙承压含水层(Ⅱ)、K6~12煤砂岩裂隙承压含水层(Ⅲ)、5煤以上砂岩裂隙承压含水层(Ⅴ)。

(1)K2~K6砂岩裂隙承压含水层(Ⅱ)

该含水层位于石炭系中统唐山组的K2灰岩和石炭系上统赵各庄组的K6灰岩之间,厚度100m。岩性以粉砂岩和细砂岩为主,胶结物多为钙泥质。本层岩石裂隙非常发育,且以倾向裂隙为主,宽度较大,多呈直立密集分布。该含水层在垂向上以K6灰岩、15煤顶板、16煤顶板含水较丰富。

本含水层单位涌水量为0.005~0.083L/s·m,平均为0.032L/s·m,渗透系数为1.296~7.816m/d,平均为3.486m/d,属于含水丰富的含水层。水质类型为HCO3--Ca2+-Mg2+型淡水,pH=7.89。矿井第二水平部分大巷揭露该含水层,开拓施工时最大涌水量达9.9m3/min,以后逐渐减小。在二水平形成降落漏斗,局部残存水压为1.0MPa,对第二水平及轴东采区主要可采煤层有一定的影响。

(2)K6~12煤砂岩裂隙承压含水层(Ⅲ)

该含水层位于石炭系上统赵各庄组的K6~9煤顶板之间,厚度20m。岩性以砂岩和粉砂岩为主,胶结物多为硅质。垂直层面的构造裂隙很发育,裂隙充填物多为钙质。从水平方向看,含水层厚度由西向东呈递增趋势,导水裂隙发育率为东部较西部高。该含水层在垂向上以12煤顶板、121/2煤顶板、K6灰岩含水较丰富。

本含水层单位涌水量为0.002~0.206L/s·m,平均为0.042L/s·m;渗透系数为0.253~19.793m/d,平均为6.360m/d,属于含水丰富的含水层。水质类型为HCO3--Ca2+-Mg2+型淡水,固型物含量为241mg/L,pH=7.85。

矿井第一水平-375大巷揭露该含水层,基建施工时最大水量达65.67m3/min,以后逐渐减小,在矿井(盆状向斜)的中部形成一大漏斗。矿井中心大部分地区该含水层水基本上已降至含水层顶板,对第一水平主要可采煤层威胁不大。第二水平-475大巷大部分也揭露该含水层,开拓施工时最大水量达7.65m3/min,以后逐渐减小,对二水平主要可采煤层威胁不大。三水平开拓延伸工程主要受该含水层水威胁,且节理裂隙发育,水文地质条件较复杂。在施工3048轨道巷过程中曾出现过最大0.96m3/min顶板砂岩裂隙水。随着生产的进行,预计涌水量逐渐减少,对三水平的主要可采煤层的影响不是很大。

(3)5煤以上砂岩裂隙承压含水层(Ⅴ)

该含水层位于二叠系下统大苗庄组的5煤至唐家庄组上界。岩性以粉砂岩及砂岩为主,其中中粗砂岩含水最丰富,砂岩胶结物多为钙、硅、泥质。本层岩石裂隙非常发育,且以倾向裂隙为主,宽度较大,多呈直立密集分布。在1987~1996年施工的钻孔当钻至本层时,冲洗液漏失现象也很严重,常有不回水现象,因此可知本含水层裂隙发育。但通过1148、1331、2080等5煤以上承压含水层疏水中心实践证实本含水层在水平方向上分布极不均匀,因此本含水层为非均质各向异性的含水层。

Ⅴ含水层为砂岩裂隙承压含水层,平均厚度60m,岩性以砂岩为主。中粗粒砂岩段含水丰富,单位涌水量1.l25L/s·m,渗透系数5.292m/d。勘探钻孔穿过含水层时均有冲洗液消耗,通过资料分析和绘制冲洗液消耗量分区图,井田东翼、南翼、深部采区消耗量最大。钻探结果表明:这些区域岩石裂隙非常发育,且以倾向裂隙为主,宽度较大,多呈直立状密集分布;构造以NEE向高角度正断层普遍发育,断层面张开,有泥砾充填,部分充水。而井田西翼NNE到NE向逆断层密集,倾角缓,层面充填断层泥,均无水。通过分析Ⅴ含水层的水文地质参数(表10-5),其富水性也具有同样明显的分区性,说明断裂构造和岩石裂隙对含水层富水性分布起到控制作用。

表10-5 含水层水文地质参数

注:本含水层可分为下段(ⅤA)、上段(ⅤB)。

a.下段(ⅤA):在5煤以上为60m厚,为一河床相砂岩,与下伏地层呈冲刷接触,在井田西部和中部直接冲刷至5煤或6煤,甚至冲刷至7煤或8煤。本段单位涌水量为0.007~0.117L/s·m,平均为0.052L/s·m;渗透系数为1.985~8.945m/d,平均为4.952m/d。其水质特征为:HCO3--Na+-Ca2+型淡水,固形物含量234~297mg/L,pH=8.0~8.4。

b.上段(ⅤB):位于5煤以上60~100m,即厚度40m,本段顶板直接与基岩风化带连接。本段单位涌水量为0.011~0.016L/s·m,平均为0.013L/s·m;渗透系数为1.722~2.059m/d,平均为1.843m/d,其水质与下段相同。

5煤以上砂岩裂隙承压含水层边界为冲积层覆盖下的基岩露头,它受底卵含水层(Ⅶ)的补给。由于本含水层位于主要可采煤层9煤上方约50~70m处,而且9煤顶板为高岭石泥质胶结的砂岩,遇水易风化膨胀变软,极易冒落,从而使隔水层被破坏。冒落裂隙及自然裂隙可沟通本含水层,直泄工作面。如1093采面的突水事故,当时最大水量为44m3/min。

10.3.1.2 矿井间接充水含水层

(1)冲积层含水层

该含水层厚100~379.67m。作为矿井间接充水含水层,补给上述3个直接充水含水层。该含水层由砂砾、卵石、粘土颗粒组成,其中粗砂、砾石占80%,卵石占10%,粘土占10%。本层是个比较均质的含水层,但掺杂在卵砾石中的粘土物质数量不同,也就造成含水性的差异。根据含水层的厚度和抽水试验的结果可知,该含水层由北向南逐渐变厚,渗透系数K由北向南逐渐变小,富水性由西向东逐渐增强。本含水层单位涌水量为0.053~0.231L/s·m,平均为0.129L/s·m;渗透系数为7.464~32.748m/d,平均为10.455m/d,为含水丰富的含水层。

本含水层在井田东南部比较发育,几乎与基岩直接接触,补给各基岩含水层。在西北部本层下部有粘土层直接覆于基岩上,粘土层隔水性较好,它的存在使其与5煤顶板砂岩裂隙承压含水层之间的补给关系有两种形式:天窗式和越流式。

(2)奥陶系灰岩岩溶裂隙承压含水层(Ⅰ)

该含水层厚度大于600m。岩性由质纯的豹皮状灰岩和白云质灰岩组成。据勘探资料表明,施工的13个孔穿过灰岩总长度451.51m,因溶洞或巨大裂隙造成钻具骤然下陷的有10个孔25个段落,溶洞最大直径为1.13m,冲洗液失去循环。在井田东南部,因构造(F1~F3断层组)作用与巨厚的第四纪冲积层相互接触,增加了灰岩裂隙发育程度。

该含水层单位涌水量为0.002~0.267L/s·m,平均为0.122L/s·m;渗透系数为0.512~32.609m/d,平均为10.889m/d。其水质特征为:HCO3--Ca2+型,总矿化度为131~216mg/L,pH=7.8~8.3。

本含水层为含水丰富的含水层。据钻探资料,钻孔进入奥灰100m以浅范围内,上述性质随深度无明显的变化。

奥陶系灰岩距最下可采煤层9煤为158m,其间有两个含水层,即K2~K6及K6~12煤岩裂隙含水层,其厚度分别为100m,20m。其下为隔水岩层,即G层铝土~K2,厚40~68m,其岩性从上而下分别为鲕状粘土岩、粉砂岩、钙质粘土岩、K1灰岩、石英砂岩、粉砂岩、G层铝土,这套岩层隔水性能较好。

10.3.2 断层导水性

2001年委托河北省煤田地质局物测地质队对井田西三采区进行了三维综合地震勘探,共解释断层条数62条,包括正断层36条,逆断层26条。其中F1~F3断层组向西南延伸部分控制程度不足,给断层防水煤柱留设带来误差,潜伏着断层水的威胁。F16断层在第一水平揭露时均有涌水现象,二水平揭露后有导水现象。

10.3.3 矿井充水条件

10.3.3.1 矿井的充水水源

(1)大气降水、地表水

大气降水、地表水均是井田内地下水的主要补给来源,它们分别通过基岩裸露区及风化带渗入补给,并顺层径流。但在此地区受地形及基岩裂隙发育程度的控制,补给量有限。

大气降水:本区属大陆性季风气候,每年降水多集中在6~9月份,其他时间降水很少。大气降雨通过下渗补给第四纪底卵石含水层,通过顺层和垂向补给其他含水层。根据冲积层水文地质剖面图及有关资料,冲积层内含有3个岩性以粘土、亚粘土为主的隔水层,这3层隔水层沉积比较稳定,隔水性能较强,阻隔了大气降水的向下补给,下渗补给量较小。因此,大气降雨对下部含水层及矿井涌水量不会造成明显影响。

地表水:井田范围内无地表水系存在,仅有两条排水渠。一条向东排至猪笼河,另一条向西排至泥河。两条河流均远离矿区,故地表水系对矿井涌水量无影响。

另外,本区内第四纪松散地层中第三隔水层厚达10~25m,即使有采空塌陷,也不致使粘土层断开,阻隔了大气降水和潜水的向下补给。

因此大气降水、地表水和潜水对矿井涌水量影响甚小。

(2)含水层水

矿井含水层充水水源有5煤以上砂岩裂隙承压含水层水、9煤~7煤砂岩裂隙承压含水层水、K6~12煤砂岩裂隙承压含水层水、K2~K6砂岩裂隙承压含水层水。其中9煤开采受5煤以上砂岩裂隙承压含水层和9煤~7煤砂岩裂隙承压含水层水的影响,一、二水平开拓工程受K6~12煤砂岩裂隙承压含水层和K2~K6砂岩裂隙承压含水层水的影响。三水平开拓工程受9煤顶板裂隙水和8煤~5煤含水层以及K6~12煤砂岩裂隙承压含水层水的影响。其中3090、3094、3093受9煤顶板裂隙水和8煤~5煤含水层影响;3324D、3322D、3122D等采掘工作面位于9煤层,受其顶板至K6承压含水层水威胁;3326D绕道工作面施工层位均在K6~12煤之间,施工时可能有顶板裂隙水;1331工作面泄水巷施工时受9煤层顶板和5煤以上砂岩裂隙承压含水层水影响。

(3)断层水

断层水作为充水水源,主要是通过断层导通含水层水而形成的。断层的性质及围岩的破坏程度是断层充水的主要因素。张性正断层、落差大、围岩破坏严重成为良好的断层充水条件。

(4)老空水

在建井、水平延伸、新区域施工及最上方煤层回采中,充水水源主要为含水层水。而在下方煤层回采中,老空水就成为了主要充水水源。

荆各庄矿井老空水有本煤层的老空水和上煤层的老空水。

本煤层的老空水:由于煤层的开采方法和煤层本身的赋存状态不同,工作面回采后随着煤岩层垮落形成许多松散空隙,使工作面涌出的水积存在低洼的老空区内,形成老空水。在高处的工作面采后形成老空水对相邻低处的工作面产生影响。如:9煤是恒底上行采煤法,第一分层采后形成老空水对第二分层生产活动必然产生影响。

上煤层的老空水:由于上煤层回采后工作面涌出的水积存在低洼的老空区内,从而形成老空水。对下煤层的采掘活动威胁较大。

在本矿井生产过程中,由于工作面的布置、顶板的岩性特征及涌水等因素,在采空区或废巷有可能存在不同形式的积水。一旦施工工程接近、揭露或冒落带达到这些积水,便可涌入井巷,发生老空区突水事故。老空区突水具有来势猛、破坏性大的特点,往往是瞬间大量积水溃入工作面,形成灾难性事故。

10.3.3.2 矿井充水通道

通过近10年的生产实践,荆各庄井田范围内充水通道主要有以下3种方式:

( 1) 直接揭露含水层

根据开采煤层与含水层的关系,可分为直接充水水源和间接充水水源。在煤矿生产中,有些工程必须穿越含水层,当巷道直接揭露这些含水层后,含水层水将会进入矿井。

( 2) 断裂带导水

本井田构造发育。通过建井及生产阶段来看,大部分断层未与含水层导通或不导水,但由于扰动影响成为导水断层。

( 3) 采矿造成的裂隙通道

巷道掘进和工作面回采时,都会对原有围岩产生影响。当产生的裂隙导通含水层或其他水源时,这些水也会沿采动裂隙进入矿井。大部分回采工作面出水均属此种通道。

6、湖北省地质地貌分析

一.地质
湖北位于秦岭褶皱系与扬子准地台的接触带上。荆山、大洪山以北主要属秦岭褶皱系的武当—淮阳隆起带,省境北部武当山、桐柏山、大洪山和大别山形成的地质基础,其西北部与渝陕二省交界处主要属大巴山褶皱带,构成了鄂西北的大巴山和荆山,这两个构造单元都属于古生代构造带。荆山、大洪山以南,自西而东分属于上扬子台褶带和下扬子台褶带,都是燕山运动形成的地台盖层褶皱带。前者是鄂西的武陵山、巫山形成的地质基础,其地质发育与贵州高原大体一致;后者是鄂东南幕阜山脉形成的基础,与赣北、皖南山地连成一体,连绵横亘于长江南岸。江汉断拗镶嵌于上、下扬子二台地褶带之间,是白垩纪以来的陆相断陷盆地,后经长江、汉水合力冲积成为江汉平原。
鄂西地区
1.鄂西北山区以中、低山为主,谷深坡陡,神农顶高程3105.4m,为华中第一峰;北部以元古界区域变质岩地层为主,南部以古生界碳酸盐岩、碳酸盐岩夹碎屑岩地层为主。
2.鄂西南山区以中山为主,坡陡谷深;地层从古生界—中生界皆有出露,以沉积岩建造为主,主要为碳酸盐岩、碳酸盐岩夹碎屑岩,溶蚀强烈。
三峡库区以中山为主,以深切峡谷为特征;地层从元古界—中生界皆有出露,以沉积岩建造为主,主要为碳酸盐岩、碳酸盐岩夹碎屑岩、红色碎屑岩等,溶蚀强烈,夷陵黄陵背斜有扬子期中酸性岩侵入。
鄂东南地区
1.黄石地区以低山丘陵为主,地形相对高差100~500m;地层从古生界—新生界皆有出露,以沉积岩建造为主,主要为碳酸盐岩、碳酸盐岩夹碎屑岩,溶蚀强烈,伴有燕山期中酸性岩侵入,形成丰富的金属矿藏。
2.北部的蔡甸区、江夏区、嘉鱼县以丘岗、平原地貌,地形起伏较小;以古生界碳酸盐岩、碳酸盐岩夹碎屑岩地层为主,大部被粘性土层覆盖,少量露头,隐伏岩溶发育。武汉鄂州咸宁、赤壁以丘岗为主,地形起伏相对较小;以古生界碳酸盐岩、碳酸盐岩夹碎屑岩地层为主,多上覆粘性土层,隐伏岩溶发育,鄂州东部有中酸性岩侵入。
3.南部边缘幕阜山北麓(通山、崇阳、通城)以低山、丘陵为主,河谷切割较深,坡度较陡;通山、崇阳以古生界碳酸盐岩、碳酸盐岩夹碎屑岩地层为主,通城县为燕山期花岗岩侵入区,风化砂层较厚。

鄂东北地区
1.大别山区的麻城市、浠水县、蕲春县、武穴市、黄梅县以低山丘陵为主,河谷切割较深,坡度较陡,武穴市、黄梅县过渡为岗地平原;基岩以元古界、太古界深变质火山岩、片麻岩为主,多有前寒武超基性岩零星出露和燕山期酸性岩成片出露,风化砂层较厚,武穴市、黄梅县大部为第四系松散堆积层覆盖。大别山南麓(英山、罗田)以中、低山为主,河谷切割深,坡度陡;基岩以元古界、太古界深变质火山岩、片麻岩为主,风化砂层较厚。
2.中部地区(黄陂区、新洲区、安陆市、孝昌县、云梦县、黄州区、团风县、红安县)以平原丘岗地貌为主,地形起伏不大,以第四系老粘土和元古界变质岩为主。

鄂中地区
1.大洪山及周边地区以低山、丘陵、平原皆有分布,汉江夹道从其中部通过;地层以古生界和中生界碳酸盐岩、碳酸盐岩夹碎屑岩、陆相碎屑岩为主,汉江夹道上覆有松散堆积层。
2.江汉平原遍布第四系松散堆积层。江汉平原西缘山前地带(宜昌市、宜都市、松滋市)以低山、丘陵、岗地、平原地貌依坡梯次而降,地形起伏由大到小;地层也由古生界碳酸盐岩、碳酸盐岩夹碎屑岩地层逐次向中生界陆相碎屑岩地层、第四系松散堆积层过渡。

鄂北岗地
桐柏山区的曾都区、广水市、大悟县以低山丘陵为主,桐柏山与大洪山之间地形起伏相对较小;地层以元古界变质岩为主,有前寒武基性岩和燕山期酸性岩侵入,桐柏山与大洪山之间多白垩系陆相碎屑岩覆盖。地形开阔平缓,以第四系老粘土和一般粘性土为主。

二.地貌
湖北处于中国地势第二级阶梯向第三级阶梯过渡地带,地貌以山地丘陵为主,根据海拔高度、形态特征,全省地貌可划分山地、丘陵、岗地和平原4种类型。其中山地约占全省总面积44.38%,丘陵和岗地分别占22.59%和13.16%,平原湖区占19.87%。地势高低相差悬殊,西部号称“华中屋脊”的神农架最高峰神农顶,海拔达3105米;东部平原的监利县谭家渊附近,地面高程为零。全省西、北、东三面被武陵山、巫山、荆山、大巴山、武当山、桐柏山、大洪山、大别山、幕阜山等山地环绕,山前丘陵岗地广布,中南部为江汉平原,与湖南省洞庭湖平原连成一片。湖北土地结构大体是"七山一水两分田",地势三面高起、中间低平、向南敞开、北有缺口,略呈由西北向东南倾斜的不完整盆地。全省土壤分可分为11个土类,土属137个,土种455个。

与湖北麻城水文地质气候相关的内容

其他城市天气预报