1、国内真正的大数据分析产品有哪些
国内的大数据公司还是做前端可视化展现的偏多,BAT算是真正做了大数据的,行业有硬性需求,别的行业跟不上也没办法,需求决定市场。
说说更通用的数据分析吧。
大数据分析也属于数据分析的一块,在实际应用中可以把数据分析工具分成两个维度:
第一维度:数据存储层——数据报表层——数据分析层——数据展现层
第二维度:用户级——部门级——企业级——BI级
1、数据存储层
数据存储设计到数据库的概念和数据库语言,这方面不一定要深钻研,但至少要理解数据的存储方式,数据的基本结构和数据类型。SQL查询语言必不可少,精通最好。可从常用的selece查询,update修改,delete删除,insert插入的基本结构和读取入手。
Access2003、Access07等,这是最基本的个人数据库,经常用于个人或部分基本的数据存储;MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力。
SQL Server2005或更高版本,对中小企业,一些大型企业也可以采用SQL Server数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了。
DB2,Oracle数据库都是大型数据库了,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台。
BI级别,实际上这个不是数据库,而是建立在前面数据库基础上的,企业级应用的数据仓库。Data Warehouse,建立在DW机上的数据存储基本上都是商业智能平台,整合了各种数据分析,报表、分析和展现!BI级别的数据仓库结合BI产品也是近几年的大趋势。
2、报表层
企业存储了数据需要读取,需要展现,报表工具是最普遍应用的工具,尤其是在国内。传统报表解决的是展现问题,目前国内的帆软报表FineReport已经算在业内做到顶尖,是带着数据分析思想的报表,因其优异的接口开放功能、填报、表单功能,能够做到打通数据的进出,涵盖了早期商业智能的功能。
Tableau、FineBI之类,可分在报表层也可分为数据展现层。FineBI和Tableau同属于近年来非常棒的软件,可作为可视化数据分析软件,我常用FineBI从数据库中取数进行报表和可视化分析。相对而言,可视化Tableau更优,但FineBI又有另一种身份——商业智能,所以在大数据处理方面的能力更胜一筹。
3、数据分析层
这个层其实有很多分析工具,当然我们最常用的就是Excel,我经常用的就是统计分析和数据挖掘工具;
Excel软件,首先版本越高越好用这是肯定的;当然对excel来讲很多人只是掌握了5%Excel功能,Excel功能非常强大,甚至可以完成所有的统计分析工作!但是我也常说,有能力把Excel玩成统计工具不如专门学会统计软件;
SPSS软件:当前版本是18,名字也改成了PASW Statistics;我从3.0开始Dos环境下编程分析,到现在版本的变迁也可以看出SPSS社会科学统计软件包的变化,从重视医学、化学等开始越来越重视商业分析,现在已经成为了预测分析软件;
SAS软件:SAS相对SPSS其实功能更强大,SAS是平台化的,EM挖掘模块平台整合,相对来讲,SAS比较难学些,但如果掌握了SAS会更有价值,比如离散选择模型,抽样问题,正交实验设计等还是SAS比较好用,另外,SAS的学习材料比较多,也公开,会有收获的!
JMP分析:SAS的一个分析分支
XLstat:Excel的插件,可以完成大部分SPSS统计分析功能
4、表现层
表现层也叫数据可视化,以上每种工具都几乎提供了一点展现功能。FineBI和Tableau的可视化功能上文有提过。其实,近年来Excel的可视化越来越棒,配上一些插件,使用感更佳。
PPT:办公常用,用来写数据分析报告;
Xmind&百度脑图:梳理流程,帮助思考分析,展现数据分析的层次;
Xcelsius软件:Dashboard制作和数据可视化报表工具,可以直接读取数据库,在Excel里建模,互联网展现,最大特色还是可以在PPT中实现动态报表
2、销售数据分析的内容一般有哪些?
销售数据分析一般包括:
1、营运资金周转期分析销售收入结构分析
2、销售收入对比分析
3、成本费用分析
4、利润分析
5、净资产收益率分析
销售来数据分析,主要用于衡源量和评估经理人员所制定的计划销售目标与实际销售之间的关系,它可以采用销售差异分析和微观销售分析两种方法。百
(2)特产行业数据分析扩展资料:针对同一市场不同品牌产品的销售差异分析,主要是为企业的销售策略提供建议和参考。
针对不同市场的同一品牌产品的销售差异分析,主要是为企业的市场策略提供建议和参考。
微观销售分析,主要分析决定未能达到销售额的特定产品、地区等。
销售分析法的不足是没有反应企业相对于竞争者的状况,它没有能够剔度除掉一般的环境因素对企业经营状况的影响。
销售分析可以决定一个企业或公司的生产方向 。
3、零售行业的数据分析怎么做?需要具备哪些专业知识?
数据分析是从公司现有数据中提取有价值的信息,这个价值信息要依据公司行业而定发展前景不错,现在企业数据量越来越多,但一直没有加以利用,现在都越来越重视数据分析,但有经验的数据分析师却很少,所以人才缺口还很大
需要掌握的知识:
1、数据分析理论基础-统计学、概率论
2、数据分析工具-excel、SPSS、SAS/R
3、公司业务的理解(依公司而定)
数据分析师指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。
4、销售数据分析主要从哪几方面进行
以下以观远数据在快消行业的销售数据分析为例:
区域分析
品类分析新品分析渠道分析
5、如何在拼多多找一个行业的热销产品?最好能通过数据分析
用第三方的电霸或者多多参谋去分析行业数据喽
6、土特产网店所属行业分析
?
7、商品数据分析三个常用指标?
(一)、销售数据之维度
1、商品
商品是零售分析的最细维度之一,大部分的指标都依附商品来做明细的记录,同时很多维度也是通过商品进行交叉分析。
2、客户
客户是销售对象,包括会员。客户所在地和区域有关联。
3、区域
区域是地理位置。从全球视角看:洲---国家---区;从国家视角看:区——省/市——县/ 区—镇/乡/村,一般按正式行政单位划分。
4、时间
时间是进行数据分析非常重要的维度,分析的角度有公历角度和农历角度。其中, 公历角度:年——季度——月——日——时段(每2小时为一个段);星期、公历节假日。农历角度:年——节气——日——时刻;农历节假日。
(二)、销售数据之指标
1、销售数量
客户消费的商品的数量。
2、含税销售额
客户购买商品所支付的金额。
3、毛利
毛利=实际销售额-成本。
4、净利
净利=去税销售额-去税成本。
5、毛利率
销售毛利率是毛利占销售收入的百分比,也简称为毛利率,其中毛利是销售收入与销售成本的差。
毛利率=(毛利/实际销售额)×100%。
6、周转率
周转率和统计的时间段有关。周转率=(销售吊牌额/库存金额)×100%。
7、促销次数
促销次数有宏观概念上的,也有微观概念上的。宏观上,是指一个销售单位中一段 时间内发动促销的次数,或某个供应商的商品在一段时间内参与促销的次数;微观层面上,是表示一个单品在一段时间内参与促销的次数。
8、交易次数
客户在POS 点上支付一笔交易记录作为一次交易。
9、客单价
客户在一次交易中支付的金额总和称为客单价。
客单价=销售额/交易次数。
10、周转天数
周转天数=库存金额/销售吊牌额。周转天数越长,表示经营效率越低或存货管理越差;周转天数越短,表示经营效率越高或存货管理。
11、退货率
退货率=退货金额/进货金额(一段时间);用于描述经营效率或存货管理情况的指标,与时间有关。
12、售罄率
售罄率=销售数量/进货数量。
13、库销比
库销比=期末库存金额/(本期销售牌价额/销售天数*30)
(只有在单款SKU 计算中可用数量替代金额。)
14、连带率
连带率=销售件数/交易次数。
15、平均单价
平均单价=销售金额/销售件数。
16、平均折扣
平均折扣=销售金额/销售吊牌额
17、SKU(深度与宽度)
英文全称为 stock keeping unit, 简称SKU,定义为保存库存控制的最小可用单位,例如纺织品中一个SKU 通常表示一个规格,颜色,款式),即货号,例:AMF80570-1。
18、期货
所谓期货,一般指期货合约,就是指由期货交易所统一制定的、规定在将来 某一特定的时间和地点交割一定数量标的物的标准化合约 。服装行业上具体指订货会上所订购且分期交付的货品。
19、坪效
就是指终端卖场1平米的效率,一般是作为评估卖场实力的一个重要标准。
坪效=销售金额/门店营业面积(不包含仓库面积)。
20、促销商品
指促销活动期间指定的商品,其价格低于市场同类的商品。包括DM 商品,开店促销,普通促销货(特价),不包含正常降价。
(三)、销售数据之分析方法
1、直接数据的分析。
2、间接数据的组合分析。
8、如何看行业数据看行业趋势
目前大数据正处在落地应用的初期,大数据分析是大数据价值化的重要方式,对于广大传统行业来说,大数据分析目前主要以场景大数据分析为主,通过场景大数据分析呈现出一些数据背后的规律,从而为决策提供帮助。随着大数据应用的逐渐普及,未来场景大数据分析将得到更大范围的普及和应用。
相对于传统行业来说,互联网公司在大数据分析方面则有明显的优势,一方面互联网公司手里有大量的数据,另一方面互联网公司又具备专业的数据分析能力,所以在数据分析领域,互联网公司是目前的先行者。但是,互联网公司手里往往并没有丰富的行业数据,所以在产业互联网发展的过程中必须有行业的广泛参与,只要行业的参与才能积累行业大数据,从而为行业的发展提供帮助。
因此,对于广大的传统行业来说,要想从大数据分析中寻找到新的商机,首先要从采集数据开始,行业数据的采集一方面要注重数据的维度(维度往往决定了价值),另一方面也要注重数据的全流程采集。其次,数据分析既要有数据分析专家的参与,更要有行业专家的参与,能够通过数据分析的结果发现行业的发展“瓶颈”或者“痛点”,从而设计出新的商业模式或产品。
随着产业互联网的发展,数据分析将在未来的商业领域发挥出越来越重要的作用,对于当今的职场人来说,掌握一定的数据分析能力是比较重要的。